Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,15 +9,15 @@ import logging
|
|
9 |
from langchain.document_loaders import OnlinePDFLoader # for loading the pdf
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings # open source embedding model
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
-
from langchain.vectorstores import Chroma # for
|
13 |
-
from langchain.chains import RetrievalQA # for
|
14 |
-
from langchain.chat_models import ChatOpenAI #
|
15 |
-
from langchain_core.prompts import PromptTemplate #
|
16 |
|
17 |
# Setup basic logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
-
log_messages = "" #
|
21 |
|
22 |
def update_log(message):
|
23 |
global log_messages
|
@@ -27,8 +27,8 @@ def update_log(message):
|
|
27 |
def ocr_converter(input_file):
|
28 |
image_pdf = input_file.name
|
29 |
try:
|
30 |
-
#
|
31 |
-
ocrmypdf.ocr(image_pdf, image_pdf, redo_ocr=True, language="eng", output_type="pdf")
|
32 |
update_log(f"OCR conversion successful for {image_pdf}")
|
33 |
except Exception as e:
|
34 |
error_msg = f"OCR conversion failed for {image_pdf}. Error: {str(e)}"
|
@@ -40,50 +40,31 @@ def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key, relevant_pages):
|
|
40 |
try:
|
41 |
if open_ai_key is not None:
|
42 |
os.environ['OPENAI_API_KEY'] = open_ai_key
|
43 |
-
# Perform OCR conversion; errors here will be logged.
|
44 |
pdf_doc = ocr_converter(pdf_doc)
|
45 |
-
# Load the PDF file
|
46 |
loader = OnlinePDFLoader(pdf_doc)
|
47 |
pages = loader.load_and_split()
|
48 |
update_log(f"Loaded {len(pages)} pages from {pdf_doc}")
|
49 |
|
50 |
-
# Use HuggingFaceEmbeddings (open source) for generating embeddings.
|
51 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
52 |
pages_to_be_loaded = []
|
53 |
-
|
54 |
if relevant_pages:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
pageIndex = int(page_number.strip()) - 1
|
59 |
if 0 <= pageIndex < len(pages):
|
60 |
pages_to_be_loaded.append(pages[pageIndex])
|
61 |
-
|
62 |
if not pages_to_be_loaded:
|
63 |
pages_to_be_loaded = pages.copy()
|
64 |
update_log("No specific pages selected; using entire PDF.")
|
65 |
|
66 |
-
# Create a vector store using Chroma with the embeddings.
|
67 |
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings)
|
68 |
|
69 |
-
# Configure the prompt template for the QA chain.
|
70 |
prompt_template = (
|
71 |
-
"""Use the following
|
72 |
-
If you encounter a date, return it in mm/dd/yyyy format. If there is a Preface section in the document, extract the chapter# and the short description from the Preface.
|
73 |
-
Chapter numbers are listed to the left in Preface and always start with an alphabet, for example A1-1.
|
74 |
{context}
|
75 |
Question: {question}
|
76 |
-
Return the answer
|
77 |
-
When the sentences are long, try and break them into sub sections and include all the information and do not skip any information.
|
78 |
-
If there is an exception to the answer, please do include it in a 'Note:' section. If there are no exceptions to the answer, please skip the 'Note:' section.
|
79 |
-
Include a 'For additional details refer to' section when the document has more information to offer on the topic being questioned.
|
80 |
-
If the document has a Preface or 'Table of Contents' section, extract the chapter# and a short description and include the info under the 'For additional details refer to' section.
|
81 |
-
List only the chapters that contain information or skip this section altogether. Do not use page numbers as chapter numbers as they are different.
|
82 |
-
If additional information is found in multiple pages within the same chapter, list the chapter only once.
|
83 |
-
If chapter information cannot be extracted, include any other information that will help the user navigate to the relevant sections of the document.
|
84 |
-
If the document does not contain a Preface or 'Table of Contents' section, please do not call that out."""
|
85 |
)
|
86 |
-
|
87 |
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
88 |
chain_type_kwargs = {"prompt": PROMPT}
|
89 |
|
@@ -124,120 +105,70 @@ def create_sqlite_table(connection):
|
|
124 |
def load_master_questionset_into_sqlite(connection):
|
125 |
create_sqlite_table(connection)
|
126 |
cursor = connection.cursor()
|
127 |
-
|
128 |
"SELECT COUNT(document_type) FROM questions WHERE document_type=? AND questionset_tag=?",
|
129 |
-
("
|
130 |
).fetchone()[0]
|
131 |
-
if
|
132 |
-
update_log("Loading
|
133 |
-
|
134 |
-
|
135 |
-
for i in range(len(queryListForDOT)):
|
136 |
cursor.execute(
|
137 |
"INSERT INTO questions(document_type, questionset_tag, field, question) VALUES(?,?,?,?)",
|
138 |
-
["
|
139 |
)
|
140 |
-
|
|
|
141 |
cursor.execute(
|
142 |
"INSERT INTO questions(document_type, questionset_tag, field, question) VALUES(?,?,?,?)",
|
143 |
-
["
|
144 |
)
|
145 |
connection.commit()
|
146 |
total_questions = cursor.execute("SELECT COUNT(document_type) FROM questions").fetchone()[0]
|
147 |
update_log(f"Total questions in DB: {total_questions}")
|
148 |
|
149 |
-
def
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
"what is the Mortgage Identification number?",
|
155 |
-
"DOT signed date?",
|
156 |
-
"Who is the Lender?",
|
157 |
-
"what is the VA/FHA Number?",
|
158 |
-
"Who is the Co-Borrower?",
|
159 |
-
"What is the property type - single family, multi family?",
|
160 |
-
"what is the Property Address?",
|
161 |
-
"In what County is the property located?",
|
162 |
-
"what is the Electronically recorded date"
|
163 |
-
]
|
164 |
-
fieldList = [
|
165 |
-
"Loan Number",
|
166 |
-
"Borrower",
|
167 |
-
"Case Number",
|
168 |
-
"MIN Number",
|
169 |
-
"Signed Date",
|
170 |
-
"Lender",
|
171 |
-
"VA/FHA Number",
|
172 |
-
"Co-Borrower",
|
173 |
-
"Property Type",
|
174 |
-
"Property Address",
|
175 |
-
"Property County",
|
176 |
-
"Electronic Recording Date"
|
177 |
-
]
|
178 |
-
return fieldList, queryList
|
179 |
|
180 |
-
def
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
"What is the Base Income?",
|
186 |
-
"what is the Borrower's SSN?",
|
187 |
-
"Who is the Co-Borrower?",
|
188 |
-
"What is the Original Loan Amount?",
|
189 |
-
"What is the Initial P&I payment?",
|
190 |
-
"What is the Co-Borrower's SSN?",
|
191 |
-
"Number of units?",
|
192 |
-
"Who is the Seller?",
|
193 |
-
"Document signed date?"
|
194 |
-
]
|
195 |
-
fieldList = [
|
196 |
-
"Borrower",
|
197 |
-
"Property Address",
|
198 |
-
"Loan Term",
|
199 |
-
"Base Income",
|
200 |
-
"Borrower's SSN",
|
201 |
-
"Co-Borrower",
|
202 |
-
"Original Loan Amount",
|
203 |
-
"Initial P&I payment",
|
204 |
-
"Co-Borrower’s SSN",
|
205 |
-
"Units#",
|
206 |
-
"Seller",
|
207 |
-
"Signed Date"
|
208 |
-
]
|
209 |
-
return fieldList, queryList
|
210 |
|
211 |
def retrieve_document_type_and_questionsettag_from_sqlite():
|
212 |
connection = create_db_connection()
|
213 |
load_master_questionset_into_sqlite(connection)
|
214 |
cursor = connection.cursor()
|
215 |
rows = cursor.execute("SELECT document_type, questionset_tag FROM questions ORDER BY document_type, UPPER(questionset_tag)").fetchall()
|
216 |
-
|
217 |
-
for
|
218 |
-
|
219 |
-
if
|
220 |
-
|
221 |
-
update_log(f"Found question set: {
|
222 |
connection.close()
|
223 |
-
return gr.Dropdown.update(choices=
|
224 |
|
225 |
def retrieve_fields_and_questions(dropdownoption):
|
226 |
splitwords = dropdownoption.split(":")
|
227 |
connection = create_db_connection()
|
228 |
cursor = connection.cursor()
|
229 |
-
|
230 |
"SELECT document_type, field, question FROM questions WHERE document_type=? AND questionset_tag=?",
|
231 |
(splitwords[0], splitwords[1],)
|
232 |
).fetchall()
|
233 |
connection.close()
|
234 |
-
return pd.DataFrame(
|
235 |
|
236 |
def add_questionset(data, document_type, tag_for_questionset):
|
237 |
connection = create_db_connection()
|
238 |
create_sqlite_table(connection)
|
239 |
cursor = connection.cursor()
|
240 |
-
for
|
241 |
cursor.execute(
|
242 |
"INSERT INTO questions(document_type, questionset_tag, field, question) VALUES(?,?,?,?)",
|
243 |
[document_type, tag_for_questionset, row['field'], row['question']]
|
@@ -249,12 +180,12 @@ def load_csv_and_store_questionset_into_sqlite(csv_file, document_type, tag_for_
|
|
249 |
if tag_for_questionset and document_type:
|
250 |
data = pd.read_csv(csv_file.name)
|
251 |
add_questionset(data, document_type, tag_for_questionset)
|
252 |
-
|
253 |
-
update_log(
|
254 |
-
return
|
255 |
else:
|
256 |
-
return "Please select
|
257 |
-
|
258 |
def answer_predefined_questions(document_type_and_questionset):
|
259 |
splitwords = document_type_and_questionset.split(":")
|
260 |
document_type = splitwords[0]
|
@@ -264,92 +195,95 @@ def answer_predefined_questions(document_type_and_questionset):
|
|
264 |
cursor = connection.cursor()
|
265 |
rows = cursor.execute(
|
266 |
"SELECT field, question FROM questions WHERE document_type=? AND questionset_tag=?",
|
267 |
-
(document_type, question_set
|
268 |
).fetchall()
|
269 |
connection.close()
|
270 |
-
for
|
271 |
-
fields.append(
|
272 |
-
questions.append(
|
273 |
-
# Call pdf_qa.run only if pdf_qa is defined
|
274 |
try:
|
275 |
-
responses.append(pdf_qa.run(
|
276 |
except Exception as e:
|
277 |
-
|
278 |
-
update_log(
|
279 |
-
responses.append(
|
280 |
-
return pd.DataFrame({"Field": fields, "Question
|
281 |
|
282 |
def summarize_contents():
|
283 |
-
question = "Generate a short summary of the contents along with
|
|
|
|
|
284 |
try:
|
285 |
response = pdf_qa.run(question)
|
286 |
update_log("Summarization successful.")
|
287 |
return response
|
288 |
except Exception as e:
|
289 |
-
|
290 |
-
update_log(
|
291 |
-
return
|
292 |
|
293 |
def answer_query(query):
|
|
|
|
|
294 |
try:
|
295 |
response = pdf_qa.run(query)
|
296 |
update_log(f"Query answered: {query}")
|
297 |
return response
|
298 |
except Exception as e:
|
299 |
-
|
300 |
-
update_log(
|
301 |
-
return
|
302 |
|
303 |
def get_log():
|
304 |
return log_messages
|
305 |
|
306 |
-
# Define CSS and title HTML
|
307 |
css = """
|
308 |
-
#col-container {max-width: 700px; margin
|
309 |
"""
|
310 |
|
311 |
title = """
|
312 |
-
<div style="text-align: center;
|
313 |
<h1>AskMoli - Chatbot for PDFs</h1>
|
314 |
-
<p>Upload a
|
315 |
</div>
|
316 |
"""
|
317 |
|
318 |
# Build the Gradio interface
|
319 |
with gr.Blocks(css=css, theme=gr.themes.Monochrome()) as demo:
|
320 |
-
with gr.Column(
|
321 |
gr.HTML(title)
|
322 |
|
323 |
with gr.Tab("Chatbot"):
|
324 |
with gr.Column():
|
325 |
-
open_ai_key = gr.Textbox(label="Your GPT-4
|
326 |
pdf_doc = gr.File(label="Load a PDF", file_types=['.pdf'], type='filepath')
|
327 |
-
relevant_pages = gr.Textbox(label="
|
328 |
|
329 |
with gr.Row():
|
330 |
status = gr.Textbox(label="Status", interactive=False)
|
331 |
-
load_pdf_btn = gr.Button("Upload PDF
|
332 |
|
333 |
with gr.Row():
|
334 |
summary = gr.Textbox(label="Summary")
|
335 |
summarize_pdf_btn = gr.Button("Summarize Contents")
|
336 |
|
337 |
with gr.Row():
|
338 |
-
input_query = gr.Textbox(label="
|
339 |
output_answer = gr.Textbox(label="Answer")
|
340 |
-
submit_query_btn = gr.Button("Submit
|
341 |
|
342 |
with gr.Row():
|
343 |
questionsets = gr.Dropdown(label="Pre-defined Question Sets", choices=[])
|
344 |
-
load_questionsets_btn = gr.Button("Retrieve
|
345 |
-
fields_and_questions = gr.Dataframe(label="Fields & Questions
|
346 |
-
load_fields_btn = gr.Button("Retrieve Questions
|
347 |
-
|
348 |
with gr.Row():
|
349 |
-
answers_df = gr.Dataframe(label="
|
350 |
-
answer_predefined_btn = gr.Button("Get
|
351 |
|
352 |
-
# Log window
|
353 |
log_window = gr.Textbox(label="Log Window", interactive=False, lines=10)
|
354 |
|
355 |
with gr.Tab("OCR Converter"):
|
@@ -361,138 +295,17 @@ with gr.Blocks(css=css, theme=gr.themes.Monochrome()) as demo:
|
|
361 |
|
362 |
with gr.Tab("Upload Question Set"):
|
363 |
with gr.Column():
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
"Mortgage Abstract",
|
369 |
-
"Mortgage ACH Authorization Form",
|
370 |
-
"Mortgage Advance Fee Agreement",
|
371 |
-
"Mortgage Affidavit",
|
372 |
-
"Mortgage Affidavit of Suspense Funds",
|
373 |
-
"Mortgage Agreement Documents",
|
374 |
-
"Mortgage Sales Contract",
|
375 |
-
"Mortgage Loan Estimate",
|
376 |
-
"Mortgage Alimony Or Child Support",
|
377 |
-
"Mortgage Amended Proof Of Claim",
|
378 |
-
"Mortgage Amortization Schedule",
|
379 |
-
"Mortgage Flood Insurance",
|
380 |
-
"Mortgage Appraisal Report",
|
381 |
-
"Mortgage Appraisal Disclosure",
|
382 |
-
"Mortgage ARM Letter",
|
383 |
-
"Mortgage Arms Length Affidavit",
|
384 |
-
"Mortgage Assignment-Recorded",
|
385 |
-
"Mortgage Assignment-Unrecorded",
|
386 |
-
"Mortgage Assignment of Rent or Lease",
|
387 |
-
"Mortgage Automated Value Model",
|
388 |
-
"Mortgage Award Letters",
|
389 |
-
"Mortgage Bailee Letter",
|
390 |
-
"Mortgage Balloon Disclosure",
|
391 |
-
"Mortgage Bank Statement",
|
392 |
-
"Mortgage Bankruptcy Documents",
|
393 |
-
"Mortgage Bill of Sale",
|
394 |
-
"Mortgage Billing Statement",
|
395 |
-
"Mortgage Birth-Marriage-Death Certificate",
|
396 |
-
"Mortgage Borrower Certification Authorization",
|
397 |
-
"Mortgage Borrower Response Package",
|
398 |
-
"Mortgage Brokers Price Opinion",
|
399 |
-
"Mortgage Business Plan",
|
400 |
-
"Mortgage Buydown Agreement",
|
401 |
-
"Mortgage Bylaws Covenants Conditions Restrictions",
|
402 |
-
"Mortgage Cash for Keys",
|
403 |
-
"Mortgage Certificate of Redemption",
|
404 |
-
"Mortgage Certificate of Sale",
|
405 |
-
"Mortgage Certificate of Title",
|
406 |
-
"Mortgage Certification of Amount Due Payoff Reinstatement",
|
407 |
-
"Mortgage Checks-Regular or Cashiers",
|
408 |
-
"Mortgage Closing Disclosure",
|
409 |
-
"Mortgage Closing Protection Letter",
|
410 |
-
"Mortgage Closing Other",
|
411 |
-
"Mortgage Code Violations",
|
412 |
-
"Mortgage Request for Release",
|
413 |
-
"Mortgage Certificate of Liability Insurance",
|
414 |
-
"Mortgage Commitment Letter",
|
415 |
-
"Mortgage Complaint",
|
416 |
-
"Mortgage Complaint Answer Counter Claim",
|
417 |
-
"Mortgage Conditional Approval Letter",
|
418 |
-
"Mortgage Conditional Commitment",
|
419 |
-
"Mortgage Consent Order",
|
420 |
-
"Mortgage Consolidated Mortgage CEMA",
|
421 |
-
"Mortgage Conveyance Claims",
|
422 |
-
"Mortgage Correction and Revision Agreement",
|
423 |
-
"Mortgage Correspondence",
|
424 |
-
"Mortgage Court Order Settlement Divorce Decree",
|
425 |
-
"Mortgage Credit Report",
|
426 |
-
"Mortgage Customer Signature Authorization",
|
427 |
-
"Mortgage Debt Validation",
|
428 |
-
"Mortgage Deed",
|
429 |
-
"Mortgage Default Notices",
|
430 |
-
"Mortgage Direct Debit Authorization Form",
|
431 |
-
"Mortgage Disclosure Documents",
|
432 |
-
"Mortgage Document Checklist",
|
433 |
-
"Mortgage Document Correction and Fee Due Agreement",
|
434 |
-
"Mortgage Dodd Frank Certification",
|
435 |
-
"Mortgage Drivers License",
|
436 |
-
"Mortgage Request for VOE",
|
437 |
-
"Mortgage Environmental Indemnity Agreement",
|
438 |
-
"Mortgage Equal Credit Opportunity Act Notice",
|
439 |
-
"Mortgage Escrow Agreement",
|
440 |
-
"Mortgage Escrow Analysis Trial Balance Worksheet",
|
441 |
-
"Mortgage Instructions to Escrow Agent",
|
442 |
-
"Mortgage Escrow Letters",
|
443 |
-
"Mortgage Executed Deeds",
|
444 |
-
"Mortgage Fair Lending Notice",
|
445 |
-
"Mortgage Foreclosure Complaint",
|
446 |
-
"Mortgage Foreclosure Judgement",
|
447 |
-
"Mortgage Foreclosure Sale",
|
448 |
-
"Mortgage FHA Neighborhood Watch",
|
449 |
-
"Mortgage Truth-In-Lending Disclosure Statement",
|
450 |
-
"Mortgage Financial Form",
|
451 |
-
"Mortgage Financing Agreement",
|
452 |
-
"Mortgage First Payment Letter",
|
453 |
-
"Mortgage Forced Place Insurance Documents",
|
454 |
-
"Mortgage Foreclosure Documents",
|
455 |
-
"Mortgage Good Faith Estimate",
|
456 |
-
"Mortgage Guaranty",
|
457 |
-
"Mortgage HAMP Certifications",
|
458 |
-
"Mortgage HOA-Condo Covenants and Dues",
|
459 |
-
"Mortgage Exemption Hold Harmless Letter",
|
460 |
-
"Mortgage Home Equity Signature Verification Card",
|
461 |
-
"Mortgage Home Inspection",
|
462 |
-
"Mortgage Property Liability Insurance",
|
463 |
-
"Mortgage Homeowners Insurance Notice",
|
464 |
-
"Mortgage HUD-1 Settlement Statement",
|
465 |
-
"Mortgage Income Other",
|
466 |
-
"Mortgage Indemnity Agreement",
|
467 |
-
"Mortgage Informed Consumer Choice Disclosure Notice",
|
468 |
-
"Mortgage Initial Escrow Account Disclosure Statement",
|
469 |
-
"Mortgage Invoices",
|
470 |
-
"Mortgage Land Lease or Land Trust",
|
471 |
-
"Mortgage Land Title Adjustment",
|
472 |
-
"Mortgage Last Will and Testament",
|
473 |
-
"Mortgage Legal Description",
|
474 |
-
"Mortgage Letters Of Administration",
|
475 |
-
"Mortgage Letters of Testamentary",
|
476 |
-
"Mortgage Listing Agreement",
|
477 |
-
"Mortgage Litigation Guarantee",
|
478 |
-
"Mortgage DIL Closing",
|
479 |
-
"Mortgage Hardship Letter",
|
480 |
-
"Mortgage Hardship Affidavit",
|
481 |
-
"Mortgage Home Affordable Modification Agreement",
|
482 |
-
"Mortgage Profit And Loss",
|
483 |
-
"Mortgage Earnest Money Promissory Note",
|
484 |
-
"Mortgage Rental Agreement",
|
485 |
-
"Mortgage Repayment Plan",
|
486 |
-
"Mortgage Short Sale Miscellaneous"
|
487 |
-
]
|
488 |
-
document_type_for_questionset = gr.Dropdown(choices=document_types, label="Select Document Type")
|
489 |
-
tag_for_questionset = gr.Textbox(label="Name for Question Set (e.g., rwikd-dot-basic-questionset-20230707)")
|
490 |
-
csv_file = gr.File(label="Load CSV (2 columns: field, question)", file_types=['.csv'], type='filepath')
|
491 |
-
|
492 |
with gr.Row():
|
493 |
status_for_csv = gr.Textbox(label="Status", interactive=False)
|
494 |
load_csv_btn = gr.Button("Upload CSV into DB")
|
495 |
|
|
|
|
|
|
|
496 |
# Set up button actions
|
497 |
load_pdf_btn.click(load_pdf_and_generate_embeddings, inputs=[pdf_doc, open_ai_key, relevant_pages], outputs=status)
|
498 |
summarize_pdf_btn.click(summarize_contents, outputs=summary)
|
@@ -504,10 +317,6 @@ with gr.Blocks(css=css, theme=gr.themes.Monochrome()) as demo:
|
|
504 |
|
505 |
convert_btn.click(ocr_converter, inputs=image_pdf, outputs=ocr_pdf)
|
506 |
load_csv_btn.click(load_csv_and_store_questionset_into_sqlite, inputs=[csv_file, document_type_for_questionset, tag_for_questionset], outputs=status_for_csv)
|
507 |
-
|
508 |
-
# Button to refresh the log window
|
509 |
-
refresh_log_btn = gr.Button("Refresh Log")
|
510 |
-
refresh_log_btn.click(get_log, outputs=log_window)
|
511 |
|
512 |
# Launch the Gradio app
|
513 |
demo.launch(debug=True)
|
|
|
9 |
from langchain.document_loaders import OnlinePDFLoader # for loading the pdf
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings # open source embedding model
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
+
from langchain.vectorstores import Chroma # for vectorization
|
13 |
+
from langchain.chains import RetrievalQA # for QA chain
|
14 |
+
from langchain.chat_models import ChatOpenAI # ChatGPT model
|
15 |
+
from langchain_core.prompts import PromptTemplate # prompt template import
|
16 |
|
17 |
# Setup basic logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
+
log_messages = "" # global log collector
|
21 |
|
22 |
def update_log(message):
|
23 |
global log_messages
|
|
|
27 |
def ocr_converter(input_file):
|
28 |
image_pdf = input_file.name
|
29 |
try:
|
30 |
+
# Use force_ocr=True and output_type="pdf" to work around Ghostscript issues.
|
31 |
+
ocrmypdf.ocr(image_pdf, image_pdf, redo_ocr=True, force_ocr=True, language="eng", output_type="pdf")
|
32 |
update_log(f"OCR conversion successful for {image_pdf}")
|
33 |
except Exception as e:
|
34 |
error_msg = f"OCR conversion failed for {image_pdf}. Error: {str(e)}"
|
|
|
40 |
try:
|
41 |
if open_ai_key is not None:
|
42 |
os.environ['OPENAI_API_KEY'] = open_ai_key
|
|
|
43 |
pdf_doc = ocr_converter(pdf_doc)
|
|
|
44 |
loader = OnlinePDFLoader(pdf_doc)
|
45 |
pages = loader.load_and_split()
|
46 |
update_log(f"Loaded {len(pages)} pages from {pdf_doc}")
|
47 |
|
|
|
48 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
49 |
pages_to_be_loaded = []
|
|
|
50 |
if relevant_pages:
|
51 |
+
for page in relevant_pages.split(","):
|
52 |
+
if page.strip().isdigit():
|
53 |
+
pageIndex = int(page.strip()) - 1
|
|
|
54 |
if 0 <= pageIndex < len(pages):
|
55 |
pages_to_be_loaded.append(pages[pageIndex])
|
|
|
56 |
if not pages_to_be_loaded:
|
57 |
pages_to_be_loaded = pages.copy()
|
58 |
update_log("No specific pages selected; using entire PDF.")
|
59 |
|
|
|
60 |
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings)
|
61 |
|
|
|
62 |
prompt_template = (
|
63 |
+
"""Use the following context to answer the question. If you do not know the answer, return N/A.
|
|
|
|
|
64 |
{context}
|
65 |
Question: {question}
|
66 |
+
Return the answer in JSON format."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
)
|
|
|
68 |
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
69 |
chain_type_kwargs = {"prompt": PROMPT}
|
70 |
|
|
|
105 |
def load_master_questionset_into_sqlite(connection):
|
106 |
create_sqlite_table(connection)
|
107 |
cursor = connection.cursor()
|
108 |
+
masterlist_count = cursor.execute(
|
109 |
"SELECT COUNT(document_type) FROM questions WHERE document_type=? AND questionset_tag=?",
|
110 |
+
("DOC_A", "masterlist",)
|
111 |
).fetchone()[0]
|
112 |
+
if masterlist_count == 0:
|
113 |
+
update_log("Loading masterlist into DB.")
|
114 |
+
fields, queries = create_field_and_question_list_for_DOC_A()
|
115 |
+
for i in range(len(queries)):
|
|
|
116 |
cursor.execute(
|
117 |
"INSERT INTO questions(document_type, questionset_tag, field, question) VALUES(?,?,?,?)",
|
118 |
+
["DOC_A", "masterlist", fields[i], queries[i]]
|
119 |
)
|
120 |
+
fields2, queries2 = create_field_and_question_list_for_DOC_B()
|
121 |
+
for i in range(len(queries2)):
|
122 |
cursor.execute(
|
123 |
"INSERT INTO questions(document_type, questionset_tag, field, question) VALUES(?,?,?,?)",
|
124 |
+
["DOC_B", "masterlist", fields2[i], queries2[i]]
|
125 |
)
|
126 |
connection.commit()
|
127 |
total_questions = cursor.execute("SELECT COUNT(document_type) FROM questions").fetchone()[0]
|
128 |
update_log(f"Total questions in DB: {total_questions}")
|
129 |
|
130 |
+
def create_field_and_question_list_for_DOC_A():
|
131 |
+
# Only two sample entries
|
132 |
+
fields = ["Loan Number", "Borrower"]
|
133 |
+
queries = ["What is the Loan Number?", "Who is the Borrower?"]
|
134 |
+
return fields, queries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
def create_field_and_question_list_for_DOC_B():
|
137 |
+
# Only two sample entries
|
138 |
+
fields = ["Property Address", "Signed Date"]
|
139 |
+
queries = ["What is the Property Address?", "What is the Signed Date?"]
|
140 |
+
return fields, queries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
def retrieve_document_type_and_questionsettag_from_sqlite():
|
143 |
connection = create_db_connection()
|
144 |
load_master_questionset_into_sqlite(connection)
|
145 |
cursor = connection.cursor()
|
146 |
rows = cursor.execute("SELECT document_type, questionset_tag FROM questions ORDER BY document_type, UPPER(questionset_tag)").fetchall()
|
147 |
+
choices = []
|
148 |
+
for row in rows:
|
149 |
+
value = f"{row[0]}:{row[1]}"
|
150 |
+
if value not in choices:
|
151 |
+
choices.append(value)
|
152 |
+
update_log(f"Found question set: {value}")
|
153 |
connection.close()
|
154 |
+
return gr.Dropdown.update(choices=choices, value=choices[0] if choices else "")
|
155 |
|
156 |
def retrieve_fields_and_questions(dropdownoption):
|
157 |
splitwords = dropdownoption.split(":")
|
158 |
connection = create_db_connection()
|
159 |
cursor = connection.cursor()
|
160 |
+
rows = cursor.execute(
|
161 |
"SELECT document_type, field, question FROM questions WHERE document_type=? AND questionset_tag=?",
|
162 |
(splitwords[0], splitwords[1],)
|
163 |
).fetchall()
|
164 |
connection.close()
|
165 |
+
return pd.DataFrame(rows, columns=["documentType", "field", "question"])
|
166 |
|
167 |
def add_questionset(data, document_type, tag_for_questionset):
|
168 |
connection = create_db_connection()
|
169 |
create_sqlite_table(connection)
|
170 |
cursor = connection.cursor()
|
171 |
+
for _, row in data.iterrows():
|
172 |
cursor.execute(
|
173 |
"INSERT INTO questions(document_type, questionset_tag, field, question) VALUES(?,?,?,?)",
|
174 |
[document_type, tag_for_questionset, row['field'], row['question']]
|
|
|
180 |
if tag_for_questionset and document_type:
|
181 |
data = pd.read_csv(csv_file.name)
|
182 |
add_questionset(data, document_type, tag_for_questionset)
|
183 |
+
response = f"Uploaded {data.shape[0]} fields and questions for {document_type}:{tag_for_questionset}"
|
184 |
+
update_log(response)
|
185 |
+
return response
|
186 |
else:
|
187 |
+
return "Please select a Document Type and provide a name for the Question Set"
|
188 |
+
|
189 |
def answer_predefined_questions(document_type_and_questionset):
|
190 |
splitwords = document_type_and_questionset.split(":")
|
191 |
document_type = splitwords[0]
|
|
|
195 |
cursor = connection.cursor()
|
196 |
rows = cursor.execute(
|
197 |
"SELECT field, question FROM questions WHERE document_type=? AND questionset_tag=?",
|
198 |
+
(document_type, question_set)
|
199 |
).fetchall()
|
200 |
connection.close()
|
201 |
+
for field, question in rows:
|
202 |
+
fields.append(field)
|
203 |
+
questions.append(question)
|
|
|
204 |
try:
|
205 |
+
responses.append(pdf_qa.run(question))
|
206 |
except Exception as e:
|
207 |
+
err = f"Error: {str(e)}"
|
208 |
+
update_log(err)
|
209 |
+
responses.append(err)
|
210 |
+
return pd.DataFrame({"Field": fields, "Question": questions, "Response": responses})
|
211 |
|
212 |
def summarize_contents():
|
213 |
+
question = "Generate a short summary of the contents along with up to 3 example questions."
|
214 |
+
if 'pdf_qa' not in globals():
|
215 |
+
return "Error: PDF embeddings not generated. Load a PDF first."
|
216 |
try:
|
217 |
response = pdf_qa.run(question)
|
218 |
update_log("Summarization successful.")
|
219 |
return response
|
220 |
except Exception as e:
|
221 |
+
err = f"Error in summarization: {str(e)}"
|
222 |
+
update_log(err)
|
223 |
+
return err
|
224 |
|
225 |
def answer_query(query):
|
226 |
+
if 'pdf_qa' not in globals():
|
227 |
+
return "Error: PDF embeddings not generated. Load a PDF first."
|
228 |
try:
|
229 |
response = pdf_qa.run(query)
|
230 |
update_log(f"Query answered: {query}")
|
231 |
return response
|
232 |
except Exception as e:
|
233 |
+
err = f"Error in answering query: {str(e)}"
|
234 |
+
update_log(err)
|
235 |
+
return err
|
236 |
|
237 |
def get_log():
|
238 |
return log_messages
|
239 |
|
240 |
+
# Define simple CSS and title HTML
|
241 |
css = """
|
242 |
+
#col-container {max-width: 700px; margin: auto;}
|
243 |
"""
|
244 |
|
245 |
title = """
|
246 |
+
<div style="text-align: center;">
|
247 |
<h1>AskMoli - Chatbot for PDFs</h1>
|
248 |
+
<p>Upload a PDF and generate embeddings. Then ask questions or use a predefined set.</p>
|
249 |
</div>
|
250 |
"""
|
251 |
|
252 |
# Build the Gradio interface
|
253 |
with gr.Blocks(css=css, theme=gr.themes.Monochrome()) as demo:
|
254 |
+
with gr.Column(id="col-container"):
|
255 |
gr.HTML(title)
|
256 |
|
257 |
with gr.Tab("Chatbot"):
|
258 |
with gr.Column():
|
259 |
+
open_ai_key = gr.Textbox(label="Your GPT-4 API Key", type="password")
|
260 |
pdf_doc = gr.File(label="Load a PDF", file_types=['.pdf'], type='filepath')
|
261 |
+
relevant_pages = gr.Textbox(label="Optional: Comma separated page numbers")
|
262 |
|
263 |
with gr.Row():
|
264 |
status = gr.Textbox(label="Status", interactive=False)
|
265 |
+
load_pdf_btn = gr.Button("Upload PDF & Generate Embeddings")
|
266 |
|
267 |
with gr.Row():
|
268 |
summary = gr.Textbox(label="Summary")
|
269 |
summarize_pdf_btn = gr.Button("Summarize Contents")
|
270 |
|
271 |
with gr.Row():
|
272 |
+
input_query = gr.Textbox(label="Your Question")
|
273 |
output_answer = gr.Textbox(label="Answer")
|
274 |
+
submit_query_btn = gr.Button("Submit Question")
|
275 |
|
276 |
with gr.Row():
|
277 |
questionsets = gr.Dropdown(label="Pre-defined Question Sets", choices=[])
|
278 |
+
load_questionsets_btn = gr.Button("Retrieve Sets")
|
279 |
+
fields_and_questions = gr.Dataframe(label="Fields & Questions")
|
280 |
+
load_fields_btn = gr.Button("Retrieve Questions")
|
281 |
+
|
282 |
with gr.Row():
|
283 |
+
answers_df = gr.Dataframe(label="Pre-defined Answers")
|
284 |
+
answer_predefined_btn = gr.Button("Get Answers")
|
285 |
|
286 |
+
# Log window to display errors and info
|
287 |
log_window = gr.Textbox(label="Log Window", interactive=False, lines=10)
|
288 |
|
289 |
with gr.Tab("OCR Converter"):
|
|
|
295 |
|
296 |
with gr.Tab("Upload Question Set"):
|
297 |
with gr.Column():
|
298 |
+
# Now only two document types are available
|
299 |
+
document_type_for_questionset = gr.Dropdown(choices=["DOC_A", "DOC_B"], label="Select Document Type")
|
300 |
+
tag_for_questionset = gr.Textbox(label="Name for Question Set (e.g., basic-set)")
|
301 |
+
csv_file = gr.File(label="Load CSV (fields,question)", file_types=['.csv'], type='filepath')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
with gr.Row():
|
303 |
status_for_csv = gr.Textbox(label="Status", interactive=False)
|
304 |
load_csv_btn = gr.Button("Upload CSV into DB")
|
305 |
|
306 |
+
refresh_log_btn = gr.Button("Refresh Log")
|
307 |
+
refresh_log_btn.click(get_log, outputs=log_window)
|
308 |
+
|
309 |
# Set up button actions
|
310 |
load_pdf_btn.click(load_pdf_and_generate_embeddings, inputs=[pdf_doc, open_ai_key, relevant_pages], outputs=status)
|
311 |
summarize_pdf_btn.click(summarize_contents, outputs=summary)
|
|
|
317 |
|
318 |
convert_btn.click(ocr_converter, inputs=image_pdf, outputs=ocr_pdf)
|
319 |
load_csv_btn.click(load_csv_and_store_questionset_into_sqlite, inputs=[csv_file, document_type_for_questionset, tag_for_questionset], outputs=status_for_csv)
|
|
|
|
|
|
|
|
|
320 |
|
321 |
# Launch the Gradio app
|
322 |
demo.launch(debug=True)
|