Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import chromadb
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.document_loaders import PyPDFLoader
|
9 |
+
|
10 |
+
def process_pdf(file_binary):
|
11 |
+
log = []
|
12 |
+
status_message = ""
|
13 |
+
|
14 |
+
if not file_binary:
|
15 |
+
return "No file uploaded.", "Error: No file was provided."
|
16 |
+
|
17 |
+
try:
|
18 |
+
log.append("Starting PDF upload and processing...")
|
19 |
+
|
20 |
+
# Write uploaded PDF bytes to a temporary file
|
21 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
22 |
+
temp_file.write(file_binary)
|
23 |
+
temp_path = temp_file.name
|
24 |
+
log.append(f"Temporary PDF path: {temp_path}")
|
25 |
+
|
26 |
+
# Load and extract text from the PDF
|
27 |
+
try:
|
28 |
+
loader = PyPDFLoader(temp_path)
|
29 |
+
documents = loader.load()
|
30 |
+
log.append(f"Loaded {len(documents)} page(s) from PDF.")
|
31 |
+
except Exception as e:
|
32 |
+
raise RuntimeError(f"Error loading PDF: {e}")
|
33 |
+
|
34 |
+
# Split text into chunks
|
35 |
+
try:
|
36 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
37 |
+
splits = text_splitter.split_documents(documents)
|
38 |
+
log.append(f"Text split into {len(splits)} chunk(s).")
|
39 |
+
except Exception as e:
|
40 |
+
raise RuntimeError(f"Error splitting text: {e}")
|
41 |
+
|
42 |
+
# Create an in-memory Chroma client (ephemeral)
|
43 |
+
try:
|
44 |
+
log.append("Initializing in-memory ChromaDB...")
|
45 |
+
chroma_client = chromadb.Client() # in-memory, no local storage
|
46 |
+
embeddings = HuggingFaceEmbeddings(
|
47 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
48 |
+
)
|
49 |
+
Chroma.from_documents(
|
50 |
+
splits,
|
51 |
+
embeddings,
|
52 |
+
client=chroma_client
|
53 |
+
)
|
54 |
+
log.append("Successfully stored PDF chunks in ChromaDB.")
|
55 |
+
except Exception as e:
|
56 |
+
raise RuntimeError(f"Error creating ChromaDB vector store: {e}")
|
57 |
+
|
58 |
+
status_message = "PDF processed and stored in (ephemeral) ChromaDB successfully!"
|
59 |
+
log.append(status_message)
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
status_message = "Error"
|
63 |
+
log.append(f"Exception occurred: {str(e)}")
|
64 |
+
|
65 |
+
return status_message, "\n".join(log)
|
66 |
+
|
67 |
+
|
68 |
+
def retrieve_context(query):
|
69 |
+
log = []
|
70 |
+
if not query:
|
71 |
+
return "Error: No query provided."
|
72 |
+
|
73 |
+
try:
|
74 |
+
log.append("Retrieving context from in-memory ChromaDB...")
|
75 |
+
|
76 |
+
# Re-initialize the in-memory Chroma client each time
|
77 |
+
chroma_client = chromadb.Client() # ephemeral
|
78 |
+
embeddings = HuggingFaceEmbeddings(
|
79 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
80 |
+
)
|
81 |
+
vectorstore = Chroma(embedding_function=embeddings, client=chroma_client)
|
82 |
+
|
83 |
+
# Perform similarity search
|
84 |
+
results = vectorstore.similarity_search(query, k=3)
|
85 |
+
if results:
|
86 |
+
log.append(f"Found {len(results)} matching chunk(s).")
|
87 |
+
return "\n\n".join([doc.page_content for doc in results])
|
88 |
+
else:
|
89 |
+
log.append("No matching context found in the current in-memory DB.")
|
90 |
+
return "No relevant context found. Have you processed a PDF yet?"
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
log.append(f"Error retrieving context: {str(e)}")
|
94 |
+
return "\n".join(log)
|
95 |
+
|
96 |
+
|
97 |
+
with gr.Blocks() as demo:
|
98 |
+
gr.Markdown("## PDF Context Retriever with ChromaDB (In-Memory)")
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
# Use type 'binary' to receive file data as binary
|
102 |
+
pdf_upload = gr.File(label="Upload PDF", type="binary")
|
103 |
+
process_button = gr.Button("Process PDF")
|
104 |
+
|
105 |
+
output_text = gr.Textbox(label="Processing Status")
|
106 |
+
log_output = gr.Textbox(label="Log Output", interactive=False)
|
107 |
+
|
108 |
+
# Outputs: [status_message, log_output]
|
109 |
+
process_button.click(
|
110 |
+
fn=process_pdf,
|
111 |
+
inputs=pdf_upload,
|
112 |
+
outputs=[output_text, log_output]
|
113 |
+
)
|
114 |
+
|
115 |
+
query_input = gr.Textbox(label="Enter your query")
|
116 |
+
retrieve_button = gr.Button("Retrieve Context")
|
117 |
+
context_output = gr.Textbox(label="Retrieved Context")
|
118 |
+
|
119 |
+
retrieve_button.click(
|
120 |
+
fn=retrieve_context,
|
121 |
+
inputs=query_input,
|
122 |
+
outputs=context_output
|
123 |
+
)
|
124 |
+
|
125 |
+
demo.launch()
|