File size: 6,422 Bytes
bfdc429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# app.py
import os
from google import genai
import gradio as gr
import PyPDF2
import numpy as np

# Try importing DSPy for chain-of-thought reasoning
try:
    import dspy
    HAS_DSPY = True
except ImportError:
    HAS_DSPY = False

#############################################
# Load Gemini API key from environment variable
#############################################
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
if not GEMINI_API_KEY:
    raise ValueError("Please set the GEMINI_API_KEY environment variable.")

# Initialize the Gemini API client with the secret key
client = genai.Client(api_key=GEMINI_API_KEY)

#############################################
# Custom DSPy Prompt Signature Function
#############################################
def custom_dspy_prompt(text, mode="summarization"):
    """
    Returns a custom chain-of-thought prompt signature for DSPy.
    Modes:
      - "summarization": for summarizing a text chunk.
      - "overall": for combining chunk summaries.
    """
    if mode == "summarization":
        return (f"EffectiveDSPyCOT: Please provide a detailed, robust, and token-expansive summary using chain-of-thought reasoning. "
                f"Preserve context and key details. Text:\n\n{text}")
    elif mode == "overall":
        return (f"EffectiveDSPyCOT: Combine the following chunk summaries into an overall comprehensive summary. "
                f"Expand on details and maintain context with chain-of-thought reasoning. Summaries:\n\n{text}")
    else:
        return text

#############################################
# Fallback Using Gemini's generate_content Method
#############################################
def fallback_predict(prompt, system_msg="You are a helpful assistant."):
    """
    Uses the Gemini API (generate_content method) to generate content.
    """
    try:
        full_prompt = f"{system_msg}\n\n{prompt}"
        response = client.models.generate_content(
            model="gemini-2.0-flash",  # Adjust model name as needed.
            contents=full_prompt
        )
        return response.text
    except Exception as e:
        return f"[Gemini fallback error]: {str(e)}"

#############################################
# PDF Extraction and Improved Chunking
#############################################
def extract_text_from_pdf(pdf_path):
    """
    Extract text from all pages of a PDF file.
    """
    text = ""
    with open(pdf_path, "rb") as f:
        pdf_reader = PyPDF2.PdfReader(f)
        for page in pdf_reader.pages:
            page_text = page.extract_text()
            if page_text:
                text += page_text + "\n"
    return text

def chunk_text(text, chunk_size=2000, overlap=300):
    """
    Split the text into overlapping chunks.
    Larger chunk size and overlap help maintain context and expand token capacity.
    """
    words = text.split()
    chunks = []
    start = 0
    while start < len(words):
        end = min(start + chunk_size, len(words))
        chunk = " ".join(words[start:end])
        chunks.append(chunk)
        start += chunk_size - overlap  # Advance with overlap
    return chunks

#############################################
# Summarizing a Single Chunk with Custom DSPy / Gemini
#############################################
def summarize_chunk(chunk):
    """
    Summarize a text chunk using a custom DSPy chain-of-thought prompt.
    Falls back to Gemini if DSPy is not available or fails.
    """
    prompt = custom_dspy_prompt(chunk, mode="summarization")
    if HAS_DSPY:
        try:
            summary = dspy.predict(prompt)
        except Exception as e:
            summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.")
    else:
        summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.")
    return summary

#############################################
# Summarizing the Entire PDF
#############################################
def summarize_document(pdf_path):
    """
    Extract text from PDF, split it into overlapping chunks, summarize each chunk,
    and then combine the chunk summaries into an overall document summary.
    """
    text = extract_text_from_pdf(pdf_path)
    chunks = chunk_text(text)
    
    summaries = []
    for chunk in chunks:
        summary = summarize_chunk(chunk)
        summaries.append(summary)
    
    overall_prompt = custom_dspy_prompt("\n\n".join(summaries), mode="overall")
    if HAS_DSPY:
        try:
            overall_summary = dspy.predict(overall_prompt)
        except Exception as e:
            overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.")
    else:
        overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.")
    
    return overall_summary, summaries

#############################################
# Enhanced Gradio Interface with Better UI Aesthetics (Summarization Only)
#############################################
custom_css = """
<style>
    body { background-color: #f4f7f9; }
    .gradio-container { font-family: 'Arial', sans-serif; }
    h1, h2, h3 { color: #333333; }
    .tab-header { background-color: #ffffff; border-bottom: 2px solid #e0e0e0; }
    .gr-button { background-color: #4CAF50; color: white; }
    .gr-textbox { background-color: #ffffff; }
</style>
"""

with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("## PDF Summarization Interface with Gemini API\n"
                "Upload a PDF document to get a robust, detailed summary using a custom DSPy chain-of-thought prompt.\n")
    
    with gr.Row():
        pdf_input_sum = gr.File(label="Upload PDF for Summarization", file_types=['.pdf'])
        summarize_button = gr.Button("Summarize Document")
    overall_summary_output = gr.Textbox(label="Overall Document Summary", lines=8)
    chunk_summaries_output = gr.Textbox(label="Chunk Summaries", lines=10)
    
    def process_and_summarize(pdf_file):
        if pdf_file is None:
            return "No file uploaded.", "No file uploaded."
        file_path = pdf_file.name
        overall, chunks = summarize_document(file_path)
        return overall, "\n\n".join(chunks)
    
    summarize_button.click(
        fn=process_and_summarize,
        inputs=pdf_input_sum,
        outputs=[overall_summary_output, chunk_summaries_output]
    )
    
demo.launch()