Spaces:
Running
Running
File size: 6,422 Bytes
bfdc429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# app.py
import os
from google import genai
import gradio as gr
import PyPDF2
import numpy as np
# Try importing DSPy for chain-of-thought reasoning
try:
import dspy
HAS_DSPY = True
except ImportError:
HAS_DSPY = False
#############################################
# Load Gemini API key from environment variable
#############################################
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("Please set the GEMINI_API_KEY environment variable.")
# Initialize the Gemini API client with the secret key
client = genai.Client(api_key=GEMINI_API_KEY)
#############################################
# Custom DSPy Prompt Signature Function
#############################################
def custom_dspy_prompt(text, mode="summarization"):
"""
Returns a custom chain-of-thought prompt signature for DSPy.
Modes:
- "summarization": for summarizing a text chunk.
- "overall": for combining chunk summaries.
"""
if mode == "summarization":
return (f"EffectiveDSPyCOT: Please provide a detailed, robust, and token-expansive summary using chain-of-thought reasoning. "
f"Preserve context and key details. Text:\n\n{text}")
elif mode == "overall":
return (f"EffectiveDSPyCOT: Combine the following chunk summaries into an overall comprehensive summary. "
f"Expand on details and maintain context with chain-of-thought reasoning. Summaries:\n\n{text}")
else:
return text
#############################################
# Fallback Using Gemini's generate_content Method
#############################################
def fallback_predict(prompt, system_msg="You are a helpful assistant."):
"""
Uses the Gemini API (generate_content method) to generate content.
"""
try:
full_prompt = f"{system_msg}\n\n{prompt}"
response = client.models.generate_content(
model="gemini-2.0-flash", # Adjust model name as needed.
contents=full_prompt
)
return response.text
except Exception as e:
return f"[Gemini fallback error]: {str(e)}"
#############################################
# PDF Extraction and Improved Chunking
#############################################
def extract_text_from_pdf(pdf_path):
"""
Extract text from all pages of a PDF file.
"""
text = ""
with open(pdf_path, "rb") as f:
pdf_reader = PyPDF2.PdfReader(f)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
def chunk_text(text, chunk_size=2000, overlap=300):
"""
Split the text into overlapping chunks.
Larger chunk size and overlap help maintain context and expand token capacity.
"""
words = text.split()
chunks = []
start = 0
while start < len(words):
end = min(start + chunk_size, len(words))
chunk = " ".join(words[start:end])
chunks.append(chunk)
start += chunk_size - overlap # Advance with overlap
return chunks
#############################################
# Summarizing a Single Chunk with Custom DSPy / Gemini
#############################################
def summarize_chunk(chunk):
"""
Summarize a text chunk using a custom DSPy chain-of-thought prompt.
Falls back to Gemini if DSPy is not available or fails.
"""
prompt = custom_dspy_prompt(chunk, mode="summarization")
if HAS_DSPY:
try:
summary = dspy.predict(prompt)
except Exception as e:
summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.")
else:
summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.")
return summary
#############################################
# Summarizing the Entire PDF
#############################################
def summarize_document(pdf_path):
"""
Extract text from PDF, split it into overlapping chunks, summarize each chunk,
and then combine the chunk summaries into an overall document summary.
"""
text = extract_text_from_pdf(pdf_path)
chunks = chunk_text(text)
summaries = []
for chunk in chunks:
summary = summarize_chunk(chunk)
summaries.append(summary)
overall_prompt = custom_dspy_prompt("\n\n".join(summaries), mode="overall")
if HAS_DSPY:
try:
overall_summary = dspy.predict(overall_prompt)
except Exception as e:
overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.")
else:
overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.")
return overall_summary, summaries
#############################################
# Enhanced Gradio Interface with Better UI Aesthetics (Summarization Only)
#############################################
custom_css = """
<style>
body { background-color: #f4f7f9; }
.gradio-container { font-family: 'Arial', sans-serif; }
h1, h2, h3 { color: #333333; }
.tab-header { background-color: #ffffff; border-bottom: 2px solid #e0e0e0; }
.gr-button { background-color: #4CAF50; color: white; }
.gr-textbox { background-color: #ffffff; }
</style>
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("## PDF Summarization Interface with Gemini API\n"
"Upload a PDF document to get a robust, detailed summary using a custom DSPy chain-of-thought prompt.\n")
with gr.Row():
pdf_input_sum = gr.File(label="Upload PDF for Summarization", file_types=['.pdf'])
summarize_button = gr.Button("Summarize Document")
overall_summary_output = gr.Textbox(label="Overall Document Summary", lines=8)
chunk_summaries_output = gr.Textbox(label="Chunk Summaries", lines=10)
def process_and_summarize(pdf_file):
if pdf_file is None:
return "No file uploaded.", "No file uploaded."
file_path = pdf_file.name
overall, chunks = summarize_document(file_path)
return overall, "\n\n".join(chunks)
summarize_button.click(
fn=process_and_summarize,
inputs=pdf_input_sum,
outputs=[overall_summary_output, chunk_summaries_output]
)
demo.launch()
|