# app.py import os from google import genai import gradio as gr import PyPDF2 import numpy as np # Try importing DSPy for chain-of-thought reasoning try: import dspy HAS_DSPY = True except ImportError: HAS_DSPY = False ############################################# # Load Gemini API key from environment variable ############################################# GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") if not GEMINI_API_KEY: raise ValueError("Please set the GEMINI_API_KEY environment variable.") # Initialize the Gemini API client with the secret key client = genai.Client(api_key=GEMINI_API_KEY) ############################################# # Custom DSPy Prompt Signature Function ############################################# def custom_dspy_prompt(text, mode="summarization"): """ Returns a custom chain-of-thought prompt signature for DSPy. Modes: - "summarization": for summarizing a text chunk. - "overall": for combining chunk summaries. """ if mode == "summarization": return (f"EffectiveDSPyCOT: Please provide a detailed, robust, and token-expansive summary using chain-of-thought reasoning. " f"Preserve context and key details. Text:\n\n{text}") elif mode == "overall": return (f"EffectiveDSPyCOT: Combine the following chunk summaries into an overall comprehensive summary. " f"Expand on details and maintain context with chain-of-thought reasoning. Summaries:\n\n{text}") else: return text ############################################# # Fallback Using Gemini's generate_content Method ############################################# def fallback_predict(prompt, system_msg="You are a helpful assistant."): """ Uses the Gemini API (generate_content method) to generate content. """ try: full_prompt = f"{system_msg}\n\n{prompt}" response = client.models.generate_content( model="gemini-2.0-flash", # Adjust model name as needed. contents=full_prompt ) return response.text except Exception as e: return f"[Gemini fallback error]: {str(e)}" ############################################# # PDF Extraction and Improved Chunking ############################################# def extract_text_from_pdf(pdf_path): """ Extract text from all pages of a PDF file. """ text = "" with open(pdf_path, "rb") as f: pdf_reader = PyPDF2.PdfReader(f) for page in pdf_reader.pages: page_text = page.extract_text() if page_text: text += page_text + "\n" return text def chunk_text(text, chunk_size=2000, overlap=300): """ Split the text into overlapping chunks. Larger chunk size and overlap help maintain context and expand token capacity. """ words = text.split() chunks = [] start = 0 while start < len(words): end = min(start + chunk_size, len(words)) chunk = " ".join(words[start:end]) chunks.append(chunk) start += chunk_size - overlap # Advance with overlap return chunks ############################################# # Summarizing a Single Chunk with Custom DSPy / Gemini ############################################# def summarize_chunk(chunk): """ Summarize a text chunk using a custom DSPy chain-of-thought prompt. Falls back to Gemini if DSPy is not available or fails. """ prompt = custom_dspy_prompt(chunk, mode="summarization") if HAS_DSPY: try: summary = dspy.predict(prompt) except Exception as e: summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.") else: summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.") return summary ############################################# # Summarizing the Entire PDF ############################################# def summarize_document(pdf_path): """ Extract text from PDF, split it into overlapping chunks, summarize each chunk, and then combine the chunk summaries into an overall document summary. """ text = extract_text_from_pdf(pdf_path) chunks = chunk_text(text) summaries = [] for chunk in chunks: summary = summarize_chunk(chunk) summaries.append(summary) overall_prompt = custom_dspy_prompt("\n\n".join(summaries), mode="overall") if HAS_DSPY: try: overall_summary = dspy.predict(overall_prompt) except Exception as e: overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.") else: overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.") return overall_summary, summaries ############################################# # Enhanced Gradio Interface with Better UI Aesthetics (Summarization Only) ############################################# custom_css = """ """ with gr.Blocks(css=custom_css) as demo: gr.Markdown("## PDF Summarization Interface with Gemini API\n" "Upload a PDF document to get a robust, detailed summary using a custom DSPy chain-of-thought prompt.\n") with gr.Row(): pdf_input_sum = gr.File(label="Upload PDF for Summarization", file_types=['.pdf']) summarize_button = gr.Button("Summarize Document") overall_summary_output = gr.Textbox(label="Overall Document Summary", lines=8) chunk_summaries_output = gr.Textbox(label="Chunk Summaries", lines=10) def process_and_summarize(pdf_file): if pdf_file is None: return "No file uploaded.", "No file uploaded." file_path = pdf_file.name overall, chunks = summarize_document(file_path) return overall, "\n\n".join(chunks) summarize_button.click( fn=process_and_summarize, inputs=pdf_input_sum, outputs=[overall_summary_output, chunk_summaries_output] ) demo.launch()