Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from matplotlib.colors import TwoSlopeNorm
|
8 |
+
import io
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
# Implementation of the W8A16LinearLayer
|
12 |
+
class W8A16LinearLayer(nn.Module):
|
13 |
+
def __init__(self, in_features, out_features, bias=True, dtype=torch.float32):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
self.register_buffer(
|
17 |
+
"int8_weights",
|
18 |
+
torch.randint(
|
19 |
+
-128, 127, (out_features, in_features), dtype=torch.int8
|
20 |
+
)
|
21 |
+
)
|
22 |
+
|
23 |
+
self.register_buffer("scales",
|
24 |
+
torch.randn((out_features), dtype=dtype))
|
25 |
+
|
26 |
+
if bias:
|
27 |
+
self.register_buffer("bias",
|
28 |
+
torch.randn((1, out_features),
|
29 |
+
dtype=dtype))
|
30 |
+
else:
|
31 |
+
self.bias = None
|
32 |
+
|
33 |
+
def quantize(self, weights):
|
34 |
+
"""
|
35 |
+
Quantize floating point weights to int8 precision
|
36 |
+
|
37 |
+
Args:
|
38 |
+
weights: Tensor of weights to quantize (shape: out_features x in_features)
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
None (updates the int8_weights and scales directly)
|
42 |
+
"""
|
43 |
+
w_fp32 = weights.clone().to(torch.float32)
|
44 |
+
|
45 |
+
# Calculate scales as the max absolute value for each output row
|
46 |
+
# divided by 127 (max value for int8)
|
47 |
+
scales = w_fp32.abs().max(dim=-1).values / 127
|
48 |
+
scales = scales.to(weights.dtype)
|
49 |
+
|
50 |
+
# Quantize by dividing by scales and rounding to nearest integer
|
51 |
+
int8_weights = torch.round(weights / scales.unsqueeze(1)).to(torch.int8)
|
52 |
+
|
53 |
+
# Update the model parameters
|
54 |
+
self.int8_weights = int8_weights
|
55 |
+
self.scales = scales
|
56 |
+
|
57 |
+
return int8_weights, scales
|
58 |
+
|
59 |
+
def forward(self, input):
|
60 |
+
"""
|
61 |
+
Forward pass through the quantized linear layer
|
62 |
+
|
63 |
+
Args:
|
64 |
+
input: Input tensor (shape: batch_size x seq_len x in_features)
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
output: Output tensor after the linear transformation
|
68 |
+
"""
|
69 |
+
# Cast int8 weights to input dtype while preserving the values
|
70 |
+
casted_weights = self.int8_weights.to(input.dtype)
|
71 |
+
|
72 |
+
# Perform the linear multiplication and apply the scaling factor
|
73 |
+
output = F.linear(input, casted_weights) * self.scales
|
74 |
+
|
75 |
+
# Add bias if present
|
76 |
+
if self.bias is not None:
|
77 |
+
output = output + self.bias
|
78 |
+
|
79 |
+
return output
|
80 |
+
|
81 |
+
# Helper functions for visualization
|
82 |
+
|
83 |
+
def plot_weight_matrix(weights, title="Weight Matrix"):
|
84 |
+
"""Create a heatmap visualization of weight matrices"""
|
85 |
+
plt.figure(figsize=(10, 8))
|
86 |
+
|
87 |
+
# Create a centered colormap
|
88 |
+
vmax = max(abs(weights.min().item()), abs(weights.max().item()))
|
89 |
+
vmin = -vmax
|
90 |
+
norm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)
|
91 |
+
|
92 |
+
plt.imshow(weights.detach().numpy(), cmap='RdBu_r', norm=norm)
|
93 |
+
plt.colorbar(label='Weight Value')
|
94 |
+
plt.title(title)
|
95 |
+
|
96 |
+
# Save the plot to a bytes buffer
|
97 |
+
buf = io.BytesIO()
|
98 |
+
plt.savefig(buf, format='png')
|
99 |
+
plt.close()
|
100 |
+
buf.seek(0)
|
101 |
+
|
102 |
+
return Image.open(buf)
|
103 |
+
|
104 |
+
def plot_weight_distribution(weights, title="Weight Distribution"):
|
105 |
+
"""Create a histogram visualization of weight distributions"""
|
106 |
+
plt.figure(figsize=(10, 6))
|
107 |
+
|
108 |
+
# Flatten the weights to 1D for histogram
|
109 |
+
flat_weights = weights.flatten().detach().numpy()
|
110 |
+
|
111 |
+
plt.hist(flat_weights, bins=50, alpha=0.7, color='blue')
|
112 |
+
plt.xlabel('Weight Value')
|
113 |
+
plt.ylabel('Frequency')
|
114 |
+
plt.title(title)
|
115 |
+
plt.grid(alpha=0.3)
|
116 |
+
|
117 |
+
# Save the plot to a bytes buffer
|
118 |
+
buf = io.BytesIO()
|
119 |
+
plt.savefig(buf, format='png')
|
120 |
+
plt.close()
|
121 |
+
buf.seek(0)
|
122 |
+
|
123 |
+
return Image.open(buf)
|
124 |
+
|
125 |
+
def calculate_quantization_error(original, quantized, scales):
|
126 |
+
"""Calculate error metrics between original and dequantized weights"""
|
127 |
+
# Dequantize the weights
|
128 |
+
dequantized = quantized.float() * scales.unsqueeze(1)
|
129 |
+
|
130 |
+
# Calculate error metrics
|
131 |
+
abs_error = (original - dequantized).abs()
|
132 |
+
max_error = abs_error.max().item()
|
133 |
+
mean_error = abs_error.mean().item()
|
134 |
+
|
135 |
+
return max_error, mean_error, dequantized
|
136 |
+
|
137 |
+
# Gradio UI components
|
138 |
+
|
139 |
+
def initialize_model(in_features, out_features, with_bias, dtype_str):
|
140 |
+
"""Initialize a new quantized linear layer model"""
|
141 |
+
# Map dtype string to torch dtype
|
142 |
+
dtype_map = {
|
143 |
+
"float32": torch.float32,
|
144 |
+
"float16": torch.float16,
|
145 |
+
"bfloat16": torch.bfloat16
|
146 |
+
}
|
147 |
+
dtype = dtype_map[dtype_str]
|
148 |
+
|
149 |
+
# Create the model
|
150 |
+
model = W8A16LinearLayer(in_features, out_features, bias=with_bias, dtype=dtype)
|
151 |
+
|
152 |
+
# Generate random weights for visualization
|
153 |
+
random_weights = torch.randn((out_features, in_features), dtype=dtype)
|
154 |
+
|
155 |
+
# Original weights visualization
|
156 |
+
weights_vis = plot_weight_matrix(random_weights, "Original Weights")
|
157 |
+
dist_vis = plot_weight_distribution(random_weights, "Original Weight Distribution")
|
158 |
+
|
159 |
+
# Quantize the weights
|
160 |
+
int8_weights, scales = model.quantize(random_weights)
|
161 |
+
|
162 |
+
# Quantized weights visualization
|
163 |
+
q_weights_vis = plot_weight_matrix(int8_weights, "Quantized Weights (INT8)")
|
164 |
+
q_dist_vis = plot_weight_distribution(int8_weights, "Quantized Weight Distribution")
|
165 |
+
|
166 |
+
# Calculate quantization error
|
167 |
+
max_error, mean_error, dequantized = calculate_quantization_error(
|
168 |
+
random_weights, int8_weights, scales
|
169 |
+
)
|
170 |
+
|
171 |
+
# Dequantized weights visualization
|
172 |
+
deq_weights_vis = plot_weight_matrix(dequantized, "Dequantized Weights")
|
173 |
+
|
174 |
+
# Error visualization
|
175 |
+
error = (random_weights - dequantized).abs()
|
176 |
+
error_vis = plot_weight_matrix(error, "Quantization Error (Absolute)")
|
177 |
+
|
178 |
+
# Create model summary
|
179 |
+
model_info = f"""
|
180 |
+
## Model Configuration
|
181 |
+
- Input Features: {in_features}
|
182 |
+
- Output Features: {out_features}
|
183 |
+
- Bias: {"Yes" if with_bias else "No"}
|
184 |
+
- Data Type: {dtype_str}
|
185 |
+
|
186 |
+
## Quantization Stats
|
187 |
+
- Original Weights Shape: {random_weights.shape}
|
188 |
+
- Quantized Weights Shape: {int8_weights.shape}
|
189 |
+
- Scales Shape: {scales.shape}
|
190 |
+
- Maximum Quantization Error: {max_error:.6f}
|
191 |
+
- Mean Quantization Error: {mean_error:.6f}
|
192 |
+
- Memory Savings: {100 * (1 - (int8_weights.element_size() + scales.element_size() * scales.numel()/int8_weights.numel()) / random_weights.element_size()):.2f}%
|
193 |
+
"""
|
194 |
+
|
195 |
+
# Create sample input/output for the model
|
196 |
+
sample_input = torch.randn(1, in_features, dtype=dtype)
|
197 |
+
sample_output = model(sample_input)
|
198 |
+
|
199 |
+
io_info = f"""
|
200 |
+
## Sample Input/Output
|
201 |
+
- Input Shape: {sample_input.shape}
|
202 |
+
- Output Shape: {sample_output.shape}
|
203 |
+
- Output Range: [{sample_output.min().item():.4f}, {sample_output.max().item():.4f}]
|
204 |
+
"""
|
205 |
+
|
206 |
+
return model_info, io_info, weights_vis, q_weights_vis, deq_weights_vis, dist_vis, q_dist_vis, error_vis
|
207 |
+
|
208 |
+
def quantize_custom_weights(in_features, out_features, with_bias, dtype_str, weight_pattern):
|
209 |
+
"""Quantize custom weights based on the selected pattern"""
|
210 |
+
# Map dtype string to torch dtype
|
211 |
+
dtype_map = {
|
212 |
+
"float32": torch.float32,
|
213 |
+
"float16": torch.float16,
|
214 |
+
"bfloat16": torch.bfloat16
|
215 |
+
}
|
216 |
+
dtype = dtype_map[dtype_str]
|
217 |
+
|
218 |
+
# Create the model
|
219 |
+
model = W8A16LinearLayer(in_features, out_features, bias=with_bias, dtype=dtype)
|
220 |
+
|
221 |
+
# Generate weights based on pattern
|
222 |
+
if weight_pattern == "random":
|
223 |
+
custom_weights = torch.randn((out_features, in_features), dtype=dtype)
|
224 |
+
elif weight_pattern == "eye":
|
225 |
+
# Identity matrix (or closest approximation if dimensions don't match)
|
226 |
+
custom_weights = torch.zeros((out_features, in_features), dtype=dtype)
|
227 |
+
min_dim = min(out_features, in_features)
|
228 |
+
custom_weights[:min_dim, :min_dim] = torch.eye(min_dim, dtype=dtype)
|
229 |
+
elif weight_pattern == "ones":
|
230 |
+
custom_weights = torch.ones((out_features, in_features), dtype=dtype)
|
231 |
+
elif weight_pattern == "alternating":
|
232 |
+
custom_weights = torch.ones((out_features, in_features), dtype=dtype)
|
233 |
+
# Create a checkerboard pattern
|
234 |
+
for i in range(out_features):
|
235 |
+
for j in range(in_features):
|
236 |
+
if (i + j) % 2 == 1:
|
237 |
+
custom_weights[i, j] = -1.0
|
238 |
+
elif weight_pattern == "gradient":
|
239 |
+
# Linear gradient from -1 to 1
|
240 |
+
x = torch.linspace(-1, 1, in_features)
|
241 |
+
y = torch.linspace(-1, 1, out_features)
|
242 |
+
xx, yy = torch.meshgrid(x, y, indexing='ij')
|
243 |
+
custom_weights = (xx + yy).t().to(dtype)
|
244 |
+
|
245 |
+
# Original weights visualization
|
246 |
+
weights_vis = plot_weight_matrix(custom_weights, f"Original Weights ({weight_pattern})")
|
247 |
+
dist_vis = plot_weight_distribution(custom_weights, "Original Weight Distribution")
|
248 |
+
|
249 |
+
# Quantize the weights
|
250 |
+
int8_weights, scales = model.quantize(custom_weights)
|
251 |
+
|
252 |
+
# Quantized weights visualization
|
253 |
+
q_weights_vis = plot_weight_matrix(int8_weights, "Quantized Weights (INT8)")
|
254 |
+
q_dist_vis = plot_weight_distribution(int8_weights, "Quantized Weight Distribution")
|
255 |
+
|
256 |
+
# Calculate quantization error
|
257 |
+
max_error, mean_error, dequantized = calculate_quantization_error(
|
258 |
+
custom_weights, int8_weights, scales
|
259 |
+
)
|
260 |
+
|
261 |
+
# Dequantized weights visualization
|
262 |
+
deq_weights_vis = plot_weight_matrix(dequantized, "Dequantized Weights")
|
263 |
+
|
264 |
+
# Error visualization
|
265 |
+
error = (custom_weights - dequantized).abs()
|
266 |
+
error_vis = plot_weight_matrix(error, "Quantization Error (Absolute)")
|
267 |
+
|
268 |
+
# Quantization details
|
269 |
+
quant_info = f"""
|
270 |
+
## Quantization Details
|
271 |
+
- Original Data Type: {dtype_str}
|
272 |
+
- Quantized Data Type: int8 (8-bit)
|
273 |
+
- Weight Pattern: {weight_pattern}
|
274 |
+
|
275 |
+
## Error Analysis
|
276 |
+
- Maximum Quantization Error: {max_error:.6f}
|
277 |
+
- Mean Quantization Error: {mean_error:.6f}
|
278 |
+
- Memory Savings: {100 * (1 - (int8_weights.element_size() + scales.element_size() * scales.numel()/int8_weights.numel()) / custom_weights.element_size()):.2f}%
|
279 |
+
|
280 |
+
## Tensor Shapes
|
281 |
+
- Original Weights: {custom_weights.shape}
|
282 |
+
- Quantized Weights: {int8_weights.shape}
|
283 |
+
- Quantization Scales: {scales.shape}
|
284 |
+
"""
|
285 |
+
|
286 |
+
# Create row histograms for quantization scales
|
287 |
+
plt.figure(figsize=(10, 6))
|
288 |
+
plt.hist(scales.detach().cpu().numpy(), bins=30, alpha=0.7, color='green')
|
289 |
+
plt.xlabel('Scale Value')
|
290 |
+
plt.ylabel('Frequency')
|
291 |
+
plt.title('Distribution of Quantization Scales')
|
292 |
+
plt.grid(alpha=0.3)
|
293 |
+
|
294 |
+
# Save the plot to a bytes buffer
|
295 |
+
buf = io.BytesIO()
|
296 |
+
plt.savefig(buf, format='png')
|
297 |
+
plt.close()
|
298 |
+
buf.seek(0)
|
299 |
+
scales_vis = Image.open(buf)
|
300 |
+
|
301 |
+
return quant_info, weights_vis, q_weights_vis, deq_weights_vis, dist_vis, q_dist_vis, error_vis, scales_vis
|
302 |
+
|
303 |
+
# Create Gradio interface
|
304 |
+
with gr.Blocks(title="8-Bit Weight Quantizer") as demo:
|
305 |
+
gr.Markdown("# PyTorch 8-Bit Weight Quantizer")
|
306 |
+
gr.Markdown("""
|
307 |
+
This tool demonstrates quantization of neural network weights to INT8 precision.
|
308 |
+
It implements a custom `W8A16LinearLayer` that uses 8-bit weights with 16-bit activations.
|
309 |
+
""")
|
310 |
+
|
311 |
+
with gr.Tabs():
|
312 |
+
with gr.TabItem("Initialize Model"):
|
313 |
+
with gr.Row():
|
314 |
+
with gr.Column():
|
315 |
+
in_feat = gr.Slider(minimum=1, maximum=512, value=16, step=1, label="Input Features")
|
316 |
+
out_feat = gr.Slider(minimum=1, maximum=512, value=32, step=1, label="Output Features")
|
317 |
+
with_bias = gr.Checkbox(value=True, label="Include Bias")
|
318 |
+
dtype = gr.Dropdown(choices=["float32", "float16", "bfloat16"], value="float32", label="Data Type")
|
319 |
+
init_btn = gr.Button("Initialize Model")
|
320 |
+
|
321 |
+
with gr.Column():
|
322 |
+
model_info = gr.Markdown()
|
323 |
+
io_info = gr.Markdown()
|
324 |
+
|
325 |
+
with gr.Row():
|
326 |
+
orig_weights = gr.Image(label="Original Weights")
|
327 |
+
quant_weights = gr.Image(label="Quantized Weights (INT8)")
|
328 |
+
dequant_weights = gr.Image(label="Dequantized Weights")
|
329 |
+
|
330 |
+
with gr.Row():
|
331 |
+
orig_dist = gr.Image(label="Original Weight Distribution")
|
332 |
+
quant_dist = gr.Image(label="Quantized Weight Distribution")
|
333 |
+
error_vis = gr.Image(label="Quantization Error")
|
334 |
+
|
335 |
+
with gr.TabItem("Custom Quantization"):
|
336 |
+
with gr.Row():
|
337 |
+
with gr.Column():
|
338 |
+
c_in_feat = gr.Slider(minimum=1, maximum=512, value=16, step=1, label="Input Features")
|
339 |
+
c_out_feat = gr.Slider(minimum=1, maximum=512, value=32, step=1, label="Output Features")
|
340 |
+
c_with_bias = gr.Checkbox(value=True, label="Include Bias")
|
341 |
+
c_dtype = gr.Dropdown(choices=["float32", "float16", "bfloat16"], value="float32", label="Data Type")
|
342 |
+
weight_pattern = gr.Dropdown(
|
343 |
+
choices=["random", "eye", "ones", "alternating", "gradient"],
|
344 |
+
value="random",
|
345 |
+
label="Weight Pattern"
|
346 |
+
)
|
347 |
+
quantize_btn = gr.Button("Quantize Weights")
|
348 |
+
|
349 |
+
with gr.Column():
|
350 |
+
quant_details = gr.Markdown()
|
351 |
+
|
352 |
+
with gr.Row():
|
353 |
+
c_orig_weights = gr.Image(label="Original Weights")
|
354 |
+
c_quant_weights = gr.Image(label="Quantized Weights (INT8)")
|
355 |
+
c_dequant_weights = gr.Image(label="Dequantized Weights")
|
356 |
+
|
357 |
+
with gr.Row():
|
358 |
+
c_orig_dist = gr.Image(label="Original Weight Distribution")
|
359 |
+
c_quant_dist = gr.Image(label="Quantized Weight Distribution")
|
360 |
+
c_error_vis = gr.Image(label="Quantization Error")
|
361 |
+
|
362 |
+
with gr.Row():
|
363 |
+
scales_dist = gr.Image(label="Quantization Scales Distribution")
|
364 |
+
|
365 |
+
with gr.TabItem("About"):
|
366 |
+
gr.Markdown("""
|
367 |
+
## 8-bit Quantizer Implementation
|
368 |
+
|
369 |
+
This implementation includes:
|
370 |
+
|
371 |
+
1. **W8A16LinearLayer** - A PyTorch module that uses INT8 weights and FP16/BF16/FP32 activations
|
372 |
+
2. **Quantization** - Converts FP32/FP16/BF16 weights to INT8 using per-output-channel scaling
|
373 |
+
3. **Visualization** - Shows the impact of quantization on weight distributions and errors
|
374 |
+
|
375 |
+
### How It Works:
|
376 |
+
|
377 |
+
1. For each output channel, find the maximum absolute weight value
|
378 |
+
2. Scale all weights in that channel so the maximum fits in INT8 range (-128 to 127)
|
379 |
+
3. Round scaled weights to integers and store as INT8
|
380 |
+
4. During inference, multiply INT8 weights by scaling factors to recover approximate FP values
|
381 |
+
|
382 |
+
The quantization process reduces memory usage by up to 75% compared to FP32 weights.
|
383 |
+
|
384 |
+
### References:
|
385 |
+
|
386 |
+
- This implementation is based on modern techniques used in LLM quantization
|
387 |
+
- Similar methods are used in libraries like bitsandbytes, AutoGPTQ, and GPTQ-for-LLaMa
|
388 |
+
""")
|
389 |
+
|
390 |
+
# Connect buttons to functions
|
391 |
+
init_btn.click(
|
392 |
+
initialize_model,
|
393 |
+
inputs=[in_feat, out_feat, with_bias, dtype],
|
394 |
+
outputs=[model_info, io_info, orig_weights, quant_weights, dequant_weights, orig_dist, quant_dist, error_vis]
|
395 |
+
)
|
396 |
+
|
397 |
+
quantize_btn.click(
|
398 |
+
quantize_custom_weights,
|
399 |
+
inputs=[c_in_feat, c_out_feat, c_with_bias, c_dtype, weight_pattern],
|
400 |
+
outputs=[quant_details, c_orig_weights, c_quant_weights, c_dequant_weights, c_orig_dist, c_quant_dist, c_error_vis, scales_dist]
|
401 |
+
)
|
402 |
+
|
403 |
+
# Launch the app
|
404 |
+
if __name__ == "__main__":
|
405 |
+
demo.launch()
|