File size: 5,173 Bytes
e6f29fe acb8900 e6f29fe 6e8b0e8 acb8900 ccca270 acb8900 e6f29fe acb8900 e6f29fe acb8900 f9e31a0 e6f29fe acb8900 e6f29fe acb8900 ccca270 acb8900 ccca270 acb8900 e6f29fe acb8900 e6f29fe acb8900 e6f29fe acb8900 e6f29fe acb8900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import json
import os
from pathlib import Path
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
class PositionalEncoding(nn.Module):
def __init__(self, max_len, d_model, dropout=0.1):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class TextGen(nn.Module):
def __init__(self, vocab_size, embed_dim, num_layers, num_heads, sequence_length):
super(TextGen, self).__init__()
self.pos_encoder = PositionalEncoding(max_len=sequence_length, d_model=embed_dim)
self.emb = nn.Embedding(vocab_size, embed_dim)
self.decoder_layer = nn.TransformerDecoderLayer(d_model=embed_dim, nhead=num_heads, batch_first=True)
self.decoder = nn.TransformerDecoder(decoder_layer=self.decoder_layer, num_layers=num_layers)
self.linear = nn.Linear(embed_dim, vocab_size)
self.dropout = nn.Dropout(0.2)
def forward(self, x):
emb = self.emb(x)
input_mask = generate_square_subsequent_mask(x.size(1)).to(x.device)
x = self.pos_encoder(emb)
x = self.decoder(x, memory=x, tgt_mask=input_mask, memory_mask=input_mask)
x = self.dropout(x)
out = self.linear(x)
return out
def load_model():
# Get the directory where the model files are stored
model_dir = Path("/home/user/app/") # This is the path in HF Spaces
# Load configuration
with open(model_dir / 'model_config.json', 'r') as f:
config = json.load(f)
# Load vocabularies
with open(model_dir / 'word_to_int.json', 'r', encoding='utf-8') as f:
word_to_int = json.load(f)
with open(model_dir / 'int_to_word.json', 'r', encoding='utf-8') as f:
int_to_word = json.load(f)
# Initialize model
model = TextGen(
vocab_size=config['vocab_size'],
embed_dim=config['embed_dim'],
num_layers=config['num_layers'],
num_heads=config['num_heads'],
sequence_length=config['sequence_length']
).to(device)
# Load model weights
model.load_state_dict(torch.load(model_dir / 'model.pt', map_location=device))
model.eval()
return model, word_to_int, int_to_word, config['sequence_length']
@torch.no_grad()
def generate_text(model, prompt, word_to_int, int_to_word, sequence_length, max_length=100, temperature=1.0):
model.eval()
words = prompt.split()
current_seq = torch.LongTensor([word_to_int.get(w, 0) for w in words]).unsqueeze(0).to(device)
for _ in range(max_length):
if current_seq.size(1) > sequence_length:
current_seq = current_seq[:, -sequence_length:]
output = model(current_seq)
next_token_logits = output[:, -1, :] / temperature
next_token = torch.multinomial(F.softmax(next_token_logits, dim=-1), num_samples=1)
current_seq = torch.cat([current_seq, next_token], dim=1)
next_word = int_to_word.get(str(next_token.item()), "<UNK>")
words.append(next_word)
if next_word == ".":
break
return " ".join(words)
# Load the model and vocabularies globally
model, word_to_int, int_to_word, sequence_length = load_model()
def generate_kashmiri_text(prompt, max_length, temperature):
try:
generated = generate_text(
model,
prompt,
word_to_int,
int_to_word,
sequence_length,
max_length=max_length,
temperature=temperature
)
return generated
except Exception as e:
return f"Error: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=generate_kashmiri_text,
inputs=[
gr.Textbox(label="Enter Kashmiri Text Prompt", placeholder="دِتم مصمت۔یم بگُل غلام چھُ آں تس اکھ حمزہ گویی"),
gr.Slider(minimum=10, maximum=200, value=100, step=10, label="Maximum Length"),
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature")
],
outputs=gr.Textbox(label="Generated Text"),
title="Kashmiri Text Generation",
description="Generate Kashmiri text using a transformer-based model. Enter your prompt in Kashmiri script.",
examples=[["دِتم مصمت۔یم بگُل غلام چھُ آں تس اکھ حمزہ گویی", 100, 1.0]]
)
# Launch the interface
iface.launch() |