Omarrran commited on
Commit
d78ceed
·
verified ·
1 Parent(s): 698c9a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md CHANGED
@@ -9,5 +9,84 @@ app_file: app.py
9
  pinned: false
10
  license: mit
11
  ---
 
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
9
  pinned: false
10
  license: mit
11
  ---
12
+ # OCR Image to Text Converter
13
 
14
+ ## Overview
15
+
16
+ This project is an OCR (Optical Character Recognition) application that allows users to extract text from images. It supports multiple languages and provides a user-friendly interface for uploading images, performing OCR, and searching within the extracted text.
17
+
18
+ ## Features
19
+
20
+ - Upload images for text extraction
21
+ - Support for multiple languages (including Hindi, English, Thai, French, Chinese, Japanese, and Korean)
22
+ - Visualize OCR results with bounding boxes around detected text
23
+ - Search functionality within the extracted text
24
+ - Example images provided for testing
25
+
26
+ ## Technologies Used
27
+
28
+ - Python
29
+ - Gradio (for the web interface)
30
+ - EasyOCR (for optical character recognition)
31
+ - PIL (Python Imaging Library)
32
+ - PyTorch
33
+
34
+ ## Setup and Installation
35
+
36
+ 1. Clone this repository:
37
+ ```
38
+ git clone https://huggingface.co/spaces/Omarrran/ocr_iitr
39
+ cd ocr_iitr
40
+ ```
41
+
42
+ 2. Install the required dependencies:
43
+ ```
44
+ pip install pillow gradio torch easyocr
45
+ ```
46
+
47
+ 3. Run the application:
48
+ ```
49
+ python app.py
50
+ ```
51
+
52
+ 4. Open your web browser and navigate to the local URL provided by Gradio (usually `http://127.0.0.1:7860`).
53
+
54
+ ## Usage
55
+
56
+ 1. Upload an image or select one of the provided examples.
57
+ 2. Choose the language(s) for OCR processing.
58
+ 3. Click the "Perform OCR" button to extract text from the image.
59
+ 4. View the result image with bounding boxes and the extracted text.
60
+ 5. Use the search box to find specific text within the extracted content.
61
+
62
+ ## Example Images
63
+
64
+ The application includes several example images for testing:
65
+
66
+ - English text
67
+ - Hindi text
68
+ - Thai text
69
+ - French text
70
+ - Chinese text
71
+ - Japanese text
72
+ - Korean text
73
+
74
+ These images are automatically downloaded when you run the application.
75
+
76
+ ## Alternative Version
77
+
78
+ An alternative, ready-to-use version of this OCR application is available on Vercel. You can access it [here](https://iitr-haq-nawaz-maliks-projects.vercel.app/).
79
+
80
+ ## Notes
81
+
82
+ - The OCR process may take a few seconds to complete, especially for larger or more complex images.
83
+ - The accuracy of text extraction may vary depending on the quality of the input image and the complexity of the text.
84
+
85
+ ## Contributing
86
+
87
+ Contributions to improve the application are welcome. Please feel free to submit issues or pull requests.
88
+
89
+ ## License
90
+
91
+ license: mit
92
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference