File size: 8,549 Bytes
daf1d9d
 
 
 
 
 
 
 
 
 
d7924f2
 
 
 
 
 
 
 
 
56dcd36
 
 
daf1d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86b486d
 
daf1d9d
 
2500fde
daf1d9d
 
 
 
 
 
 
 
 
 
 
5de31b9
 
 
 
 
daf1d9d
5de31b9
 
 
 
 
 
daf1d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de31b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf1d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de31b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf1d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de31b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import random
import numpy as np
import pandas as pd
from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sklearn.metrics import average_precision_score
import matplotlib.pyplot as plt
import torch
import spaces
import os
from huggingface_hub import HfApi

# Load Hugging Face token from the environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable is not set. Please set it before running the script.")


hf_api = HfApi(
    token= HF_TOKEN, # Token is not persisted on the machine.
)

# Check for GPU support and configure appropriately
device = "cuda" if torch.cuda.is_available() else "cpu"
zero = torch.Tensor([0]).to(device)
print(f"Device being used: {zero.device}")

# Define evaluation metrics
def mean_reciprocal_rank(relevance_labels, scores):
    sorted_indices = np.argsort(scores)[::-1]
    for rank, idx in enumerate(sorted_indices, start=1):
        if relevance_labels[idx] == 1:
            return 1 / rank
    return 0

def mean_average_precision(relevance_labels, scores):
    return average_precision_score(relevance_labels, scores)

def ndcg_at_k(relevance_labels, scores, k=10):
    sorted_indices = np.argsort(scores)[::-1]
    relevance_sorted = np.take(relevance_labels, sorted_indices[:k])
    dcg = sum(rel / np.log2(rank + 2) for rank, rel in enumerate(relevance_sorted))
    idcg = sum(1 / np.log2(rank + 2) for rank in range(min(k, sum(relevance_labels))))
    return dcg / idcg if idcg > 0 else 0

# Load datasets
datasets = {
    "Relevance_Labels_Dataset": load_dataset("Omartificial-Intelligence-Space/re-ar-query-candidate" , token =HF_TOKEN )["train"].select(range(300)),
    "Positive_Negatives_Dataset": load_dataset("Omartificial-Intelligence-Space/re-ar-test-triplet" , token =HF_TOKEN )["train"].select(range(300))
}

@spaces.GPU(duration=120)
def evaluate_model_with_insights(model_name):
    model = CrossEncoder(model_name, device=device)
    results = []
    sample_outputs = []

    for dataset_name, dataset in datasets.items():
        all_mrr, all_map, all_ndcg = [], [], []
        dataset_samples = []
        if 'candidate_document' in dataset.column_names:
            grouped_data = dataset.to_pandas().groupby("query")
            for query, group in grouped_data:
                # Skip invalid queries
                if query is None or not isinstance(query, str) or query.strip() == "":
                    continue

                candidate_texts = group['candidate_document'].dropna().tolist()
                relevance_labels = group['relevance_label'].tolist()

                # Skip if no valid candidate documents
                if not candidate_texts or len(candidate_texts) != len(relevance_labels):
                    continue

                pairs = [(query, doc) for doc in candidate_texts if doc is not None and isinstance(doc, str) and doc.strip() != ""]
                scores = model.predict(pairs)

                # Collecting top-5 results for display
                sorted_indices = np.argsort(scores)[::-1]
                top_docs = [(candidate_texts[i], scores[i], relevance_labels[i]) for i in sorted_indices[:5]]
                dataset_samples.append({
                    "Query": query,
                    "Top 5 Candidates": top_docs
                })

                # Metrics
                all_mrr.append(mean_reciprocal_rank(relevance_labels, scores))
                all_map.append(mean_average_precision(relevance_labels, scores))
                all_ndcg.append(ndcg_at_k(relevance_labels, scores, k=10))
        else:
            for entry in dataset:
                query = entry['query']

                # Validate query and documents
                if query is None or not isinstance(query, str) or query.strip() == "":
                    continue

                candidate_texts = [
                    doc for doc in [entry.get('positive'), entry.get('negative1'), entry.get('negative2'), entry.get('negative3'), entry.get('negative4')]
                    if doc is not None and isinstance(doc, str) and doc.strip() != ""
                ]
                relevance_labels = [1] + [0] * (len(candidate_texts) - 1)

                # Skip if no valid candidate documents
                if not candidate_texts or len(candidate_texts) != len(relevance_labels):
                    continue

                pairs = [(query, doc) for doc in candidate_texts]
                scores = model.predict(pairs)

                # Collecting top-5 results for display
                sorted_indices = np.argsort(scores)[::-1]
                top_docs = [(candidate_texts[i], scores[i], relevance_labels[i]) for i in sorted_indices[:5]]
                dataset_samples.append({
                    "Query": query,
                    "Top 5 Candidates": top_docs
                })

                # Metrics
                all_mrr.append(mean_reciprocal_rank(relevance_labels, scores))
                all_map.append(mean_average_precision(relevance_labels, scores))
                all_ndcg.append(ndcg_at_k(relevance_labels, scores, k=10))

            else:
                for entry in dataset:
                    query = entry['query']
                    candidate_texts = [entry['positive'], entry['negative1'], entry['negative2'], entry['negative3'], entry['negative4']]
                    relevance_labels = [1, 0, 0, 0, 0]
                    pairs = [(query, doc) for doc in candidate_texts]
                    scores = model.predict(pairs)

                    # Collecting top-5 results for display
                    sorted_indices = np.argsort(scores)[::-1]
                    top_docs = [(candidate_texts[i], scores[i], relevance_labels[i]) for i in sorted_indices[:5]]
                    dataset_samples.append({
                        "Query": query,
                        "Top 5 Candidates": top_docs
                    })

                    # Metrics
                    all_mrr.append(mean_reciprocal_rank(relevance_labels, scores))
                    all_map.append(mean_average_precision(relevance_labels, scores))
                    all_ndcg.append(ndcg_at_k(relevance_labels, scores, k=10))
        
        # Metrics for this dataset
        results.append({
            "Dataset": dataset_name,
            "MRR": np.mean(all_mrr),
            "MAP": np.mean(all_map),
            "nDCG@10": np.mean(all_ndcg)
        })

        # Collect sample outputs for inspection
        sample_outputs.extend(dataset_samples)

    results_df = pd.DataFrame(results)

    # Plot results as a bar chart
    fig, ax = plt.subplots(figsize=(8, 6))
    results_df.plot(kind='bar', x='Dataset', y=['MRR', 'MAP', 'nDCG@10'], ax=ax)
    ax.set_title(f"Evaluation Results for {model_name}")
    ax.set_ylabel("Score")
    plt.xticks(rotation=0)

    return results_df, fig, sample_outputs

# Gradio app interface
def gradio_app_with_insights(model_name):
    results_df, chart, samples = evaluate_model_with_insights(model_name)
    sample_display = []
    for sample in samples:
        sample_display.append(f"Query: {sample['Query']}")
        for doc, score, label in sample["Top 5 Candidates"]:
            sample_display.append(f"    Doc: {doc[:50]}... | Score: {score:.2f} | Relevance: {label}")
        sample_display.append("\n")
    return results_df, chart, "\n".join(sample_display)

interface = gr.Interface(
    fn=gradio_app_with_insights,
    inputs=gr.Textbox(label="Enter Model Name", placeholder="e.g., NAMAA-Space/GATE-Reranker-V1"),
    outputs=[
        gr.Dataframe(label="Evaluation Results"),
        gr.Plot(label="Evaluation Metrics Chart"),
        gr.Textbox(label="Sample Reranking Insights", lines=15)
    ],
    title="Arabic Reranking Model Evaluation and Insights",
    description=(
        "This app evaluates Arabic reranking models on two datasets:\n"
        "1. **Relevance Labels Dataset**\n"
        "2. **Positive-Negatives Dataset**\n\n"
        "### Metrics Used:\n"
        "- **MRR (Mean Reciprocal Rank)**: Measures how quickly the first relevant document appears.\n"
        "- **MAP (Mean Average Precision)**: Reflects ranking quality across all relevant documents.\n"
        "- **nDCG@10 (Normalized Discounted Cumulative Gain)**: Focuses on the ranking of relevant documents in the top-10.\n\n"
        "Input a model name to evaluate its performance, view metrics, and examine sample reranking results."
    )
)

interface.launch(debug=True)