Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,068 Bytes
daf1d9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import random
import numpy as np
import pandas as pd
from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sklearn.metrics import average_precision_score
import matplotlib.pyplot as plt
import torch
import spaces
# Check for GPU support and configure appropriately
device = "cuda" if torch.cuda.is_available() else "cpu"
zero = torch.Tensor([0]).to(device)
print(f"Device being used: {zero.device}")
# Define evaluation metrics
def mean_reciprocal_rank(relevance_labels, scores):
sorted_indices = np.argsort(scores)[::-1]
for rank, idx in enumerate(sorted_indices, start=1):
if relevance_labels[idx] == 1:
return 1 / rank
return 0
def mean_average_precision(relevance_labels, scores):
return average_precision_score(relevance_labels, scores)
def ndcg_at_k(relevance_labels, scores, k=10):
sorted_indices = np.argsort(scores)[::-1]
relevance_sorted = np.take(relevance_labels, sorted_indices[:k])
dcg = sum(rel / np.log2(rank + 2) for rank, rel in enumerate(relevance_sorted))
idcg = sum(1 / np.log2(rank + 2) for rank in range(min(k, sum(relevance_labels))))
return dcg / idcg if idcg > 0 else 0
# Load datasets
datasets = {
"Relevance_Labels_Dataset": load_dataset("NAMAA-Space/Ar-Reranking-Eval")["train"],
"Positive_Negatives_Dataset": load_dataset("NAMAA-Space/Arabic-Reranking-Triplet-5-Eval")["train"]
}
@spaces.GPU
def evaluate_model_with_insights(model_name):
model = CrossEncoder(model_name, device=device)
results = []
sample_outputs = []
for dataset_name, dataset in datasets.items():
all_mrr, all_map, all_ndcg = [], [], []
dataset_samples = []
if 'candidate_document' in dataset.column_names:
grouped_data = dataset.to_pandas().groupby("query")
for query, group in grouped_data:
candidate_texts = group['candidate_document'].tolist()
relevance_labels = group['relevance_label'].tolist()
pairs = [(query, doc) for doc in candidate_texts]
scores = model.predict(pairs)
# Collecting top-5 results for display
sorted_indices = np.argsort(scores)[::-1]
top_docs = [(candidate_texts[i], scores[i], relevance_labels[i]) for i in sorted_indices[:5]]
dataset_samples.append({
"Query": query,
"Top 5 Candidates": top_docs
})
# Metrics
all_mrr.append(mean_reciprocal_rank(relevance_labels, scores))
all_map.append(mean_average_precision(relevance_labels, scores))
all_ndcg.append(ndcg_at_k(relevance_labels, scores, k=10))
else:
for entry in dataset:
query = entry['query']
candidate_texts = [entry['positive'], entry['negative1'], entry['negative2'], entry['negative3'], entry['negative4']]
relevance_labels = [1, 0, 0, 0, 0]
pairs = [(query, doc) for doc in candidate_texts]
scores = model.predict(pairs)
# Collecting top-5 results for display
sorted_indices = np.argsort(scores)[::-1]
top_docs = [(candidate_texts[i], scores[i], relevance_labels[i]) for i in sorted_indices[:5]]
dataset_samples.append({
"Query": query,
"Top 5 Candidates": top_docs
})
# Metrics
all_mrr.append(mean_reciprocal_rank(relevance_labels, scores))
all_map.append(mean_average_precision(relevance_labels, scores))
all_ndcg.append(ndcg_at_k(relevance_labels, scores, k=10))
# Metrics for this dataset
results.append({
"Dataset": dataset_name,
"MRR": np.mean(all_mrr),
"MAP": np.mean(all_map),
"nDCG@10": np.mean(all_ndcg)
})
# Collect sample outputs for inspection
sample_outputs.extend(dataset_samples)
results_df = pd.DataFrame(results)
# Plot results as a bar chart
fig, ax = plt.subplots(figsize=(8, 6))
results_df.plot(kind='bar', x='Dataset', y=['MRR', 'MAP', 'nDCG@10'], ax=ax)
ax.set_title(f"Evaluation Results for {model_name}")
ax.set_ylabel("Score")
plt.xticks(rotation=0)
return results_df, fig, sample_outputs
# Gradio app interface
def gradio_app_with_insights(model_name):
results_df, chart, samples = evaluate_model_with_insights(model_name)
sample_display = []
for sample in samples:
sample_display.append(f"Query: {sample['Query']}")
for doc, score, label in sample["Top 5 Candidates"]:
sample_display.append(f" Doc: {doc[:50]}... | Score: {score:.2f} | Relevance: {label}")
sample_display.append("\n")
return results_df, chart, "\n".join(sample_display)
interface = gr.Interface(
fn=gradio_app_with_insights,
inputs=gr.Textbox(label="Enter Model Name", placeholder="e.g., NAMAA-Space/GATE-Reranker-V1"),
outputs=[
gr.Dataframe(label="Evaluation Results"),
gr.Plot(label="Evaluation Metrics Chart"),
gr.Textbox(label="Sample Reranking Insights", lines=15)
],
title="Arabic Reranking Model Evaluation and Insights",
description=(
"This app evaluates Arabic reranking models on two datasets:\n"
"1. **Relevance Labels Dataset**\n"
"2. **Positive-Negatives Dataset**\n\n"
"### Metrics Used:\n"
"- **MRR (Mean Reciprocal Rank)**: Measures how quickly the first relevant document appears.\n"
"- **MAP (Mean Average Precision)**: Reflects ranking quality across all relevant documents.\n"
"- **nDCG@10 (Normalized Discounted Cumulative Gain)**: Focuses on the ranking of relevant documents in the top-10.\n\n"
"Input a model name to evaluate its performance, view metrics, and examine sample reranking results."
)
)
interface.launch(debug=True)
|