File size: 6,068 Bytes
daf1d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import random
import numpy as np
import pandas as pd
from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sklearn.metrics import average_precision_score
import matplotlib.pyplot as plt
import torch
import spaces

# Check for GPU support and configure appropriately
device = "cuda" if torch.cuda.is_available() else "cpu"
zero = torch.Tensor([0]).to(device)
print(f"Device being used: {zero.device}")

# Define evaluation metrics
def mean_reciprocal_rank(relevance_labels, scores):
    sorted_indices = np.argsort(scores)[::-1]
    for rank, idx in enumerate(sorted_indices, start=1):
        if relevance_labels[idx] == 1:
            return 1 / rank
    return 0

def mean_average_precision(relevance_labels, scores):
    return average_precision_score(relevance_labels, scores)

def ndcg_at_k(relevance_labels, scores, k=10):
    sorted_indices = np.argsort(scores)[::-1]
    relevance_sorted = np.take(relevance_labels, sorted_indices[:k])
    dcg = sum(rel / np.log2(rank + 2) for rank, rel in enumerate(relevance_sorted))
    idcg = sum(1 / np.log2(rank + 2) for rank in range(min(k, sum(relevance_labels))))
    return dcg / idcg if idcg > 0 else 0

# Load datasets
datasets = {
    "Relevance_Labels_Dataset": load_dataset("NAMAA-Space/Ar-Reranking-Eval")["train"],
    "Positive_Negatives_Dataset": load_dataset("NAMAA-Space/Arabic-Reranking-Triplet-5-Eval")["train"]
}

@spaces.GPU
def evaluate_model_with_insights(model_name):
    model = CrossEncoder(model_name, device=device)
    results = []
    sample_outputs = []

    for dataset_name, dataset in datasets.items():
        all_mrr, all_map, all_ndcg = [], [], []
        dataset_samples = []

        if 'candidate_document' in dataset.column_names:
            grouped_data = dataset.to_pandas().groupby("query")
            for query, group in grouped_data:
                candidate_texts = group['candidate_document'].tolist()
                relevance_labels = group['relevance_label'].tolist()
                pairs = [(query, doc) for doc in candidate_texts]
                scores = model.predict(pairs)

                # Collecting top-5 results for display
                sorted_indices = np.argsort(scores)[::-1]
                top_docs = [(candidate_texts[i], scores[i], relevance_labels[i]) for i in sorted_indices[:5]]
                dataset_samples.append({
                    "Query": query,
                    "Top 5 Candidates": top_docs
                })

                # Metrics
                all_mrr.append(mean_reciprocal_rank(relevance_labels, scores))
                all_map.append(mean_average_precision(relevance_labels, scores))
                all_ndcg.append(ndcg_at_k(relevance_labels, scores, k=10))
        else:
            for entry in dataset:
                query = entry['query']
                candidate_texts = [entry['positive'], entry['negative1'], entry['negative2'], entry['negative3'], entry['negative4']]
                relevance_labels = [1, 0, 0, 0, 0]
                pairs = [(query, doc) for doc in candidate_texts]
                scores = model.predict(pairs)

                # Collecting top-5 results for display
                sorted_indices = np.argsort(scores)[::-1]
                top_docs = [(candidate_texts[i], scores[i], relevance_labels[i]) for i in sorted_indices[:5]]
                dataset_samples.append({
                    "Query": query,
                    "Top 5 Candidates": top_docs
                })

                # Metrics
                all_mrr.append(mean_reciprocal_rank(relevance_labels, scores))
                all_map.append(mean_average_precision(relevance_labels, scores))
                all_ndcg.append(ndcg_at_k(relevance_labels, scores, k=10))
        
        # Metrics for this dataset
        results.append({
            "Dataset": dataset_name,
            "MRR": np.mean(all_mrr),
            "MAP": np.mean(all_map),
            "nDCG@10": np.mean(all_ndcg)
        })

        # Collect sample outputs for inspection
        sample_outputs.extend(dataset_samples)

    results_df = pd.DataFrame(results)

    # Plot results as a bar chart
    fig, ax = plt.subplots(figsize=(8, 6))
    results_df.plot(kind='bar', x='Dataset', y=['MRR', 'MAP', 'nDCG@10'], ax=ax)
    ax.set_title(f"Evaluation Results for {model_name}")
    ax.set_ylabel("Score")
    plt.xticks(rotation=0)

    return results_df, fig, sample_outputs

# Gradio app interface
def gradio_app_with_insights(model_name):
    results_df, chart, samples = evaluate_model_with_insights(model_name)
    sample_display = []
    for sample in samples:
        sample_display.append(f"Query: {sample['Query']}")
        for doc, score, label in sample["Top 5 Candidates"]:
            sample_display.append(f"    Doc: {doc[:50]}... | Score: {score:.2f} | Relevance: {label}")
        sample_display.append("\n")
    return results_df, chart, "\n".join(sample_display)

interface = gr.Interface(
    fn=gradio_app_with_insights,
    inputs=gr.Textbox(label="Enter Model Name", placeholder="e.g., NAMAA-Space/GATE-Reranker-V1"),
    outputs=[
        gr.Dataframe(label="Evaluation Results"),
        gr.Plot(label="Evaluation Metrics Chart"),
        gr.Textbox(label="Sample Reranking Insights", lines=15)
    ],
    title="Arabic Reranking Model Evaluation and Insights",
    description=(
        "This app evaluates Arabic reranking models on two datasets:\n"
        "1. **Relevance Labels Dataset**\n"
        "2. **Positive-Negatives Dataset**\n\n"
        "### Metrics Used:\n"
        "- **MRR (Mean Reciprocal Rank)**: Measures how quickly the first relevant document appears.\n"
        "- **MAP (Mean Average Precision)**: Reflects ranking quality across all relevant documents.\n"
        "- **nDCG@10 (Normalized Discounted Cumulative Gain)**: Focuses on the ranking of relevant documents in the top-10.\n\n"
        "Input a model name to evaluate its performance, view metrics, and examine sample reranking results."
    )
)

interface.launch(debug=True)