Omartificial-Intelligence-Space
commited on
Upload files
Browse files- app.py +57 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
|
5 |
+
# Load your SentenceTransformer model fine-tuned for NLI
|
6 |
+
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-Nli-Matryoshka")
|
7 |
+
|
8 |
+
# Define the labels for NLI
|
9 |
+
labels = ["contradiction", "entailment", "neutral"]
|
10 |
+
|
11 |
+
# Function to compute similarity and classify relationship
|
12 |
+
def predict(sentence1, sentence2):
|
13 |
+
sentences = [sentence1, sentence2]
|
14 |
+
embeddings = model.encode(sentences)
|
15 |
+
|
16 |
+
# Compute cosine similarity between the two sentences
|
17 |
+
similarity_score = util.pytorch_cos_sim(embeddings[0], embeddings[1])
|
18 |
+
|
19 |
+
# Placeholder logic for NLI (needs to be replaced with actual model inference)
|
20 |
+
# This is just an example; in reality, you need a classifier trained for NLI
|
21 |
+
scores = np.random.rand(3) # Replace this with actual model prediction logic
|
22 |
+
scores = scores / scores.sum() # Normalize to sum to 1
|
23 |
+
|
24 |
+
label_probs = {labels[i]: float(scores[i]) for i in range(len(labels))}
|
25 |
+
|
26 |
+
return {
|
27 |
+
"Similarity Score": similarity_score.item(),
|
28 |
+
"Label Probabilities": label_probs
|
29 |
+
}
|
30 |
+
|
31 |
+
# Define inputs and outputs for Gradio interface
|
32 |
+
inputs = [
|
33 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter the first sentence here...", label="Sentence 1"),
|
34 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter the second sentence here...", label="Sentence 2")
|
35 |
+
]
|
36 |
+
|
37 |
+
outputs = [
|
38 |
+
gr.outputs.Textbox(label="Similarity Score"),
|
39 |
+
gr.outputs.Label(num_top_classes=3, label="Label Probabilities")
|
40 |
+
]
|
41 |
+
|
42 |
+
examples = [
|
43 |
+
["يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه"],
|
44 |
+
["الشاب نائم بينما الأم تقود ابنتها إلى الحديقة", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه"]
|
45 |
+
]
|
46 |
+
|
47 |
+
# Create Gradio interface
|
48 |
+
gr.Interface(
|
49 |
+
fn=predict,
|
50 |
+
title="Arabic Semantic Similarity and NLI with SentenceTransformers",
|
51 |
+
description="Compute the semantic similarity and classify the relationship between two Arabic sentences using a SentenceTransformer model.",
|
52 |
+
inputs=inputs,
|
53 |
+
examples=examples,
|
54 |
+
outputs=outputs,
|
55 |
+
cache_examples=False,
|
56 |
+
article="Author: Your Name. Model from Hugging Face Hub: Omartificial-Intelligence-Space/Arabic-Nli-Matryoshka",
|
57 |
+
).launch(debug=True, enable_queue=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
sentence-transformers
|
3 |
+
numpy
|
4 |
+
torch
|