Omartificial-Intelligence-Space
commited on
update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,22 @@ import numpy as np
|
|
2 |
import gradio as gr
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
# Function to compute similarity and classify relationship
|
10 |
-
def predict(mode, sentence1, sentence2=None, sentence3=None, sentence4=None, dimension="64"):
|
|
|
11 |
dimension = int(dimension)
|
12 |
result = {
|
13 |
"Selected Dimension": dimension,
|
@@ -41,9 +51,24 @@ def predict(mode, sentence1, sentence2=None, sentence3=None, sentence4=None, dim
|
|
41 |
similarity_scores = {"Similarity Score": float(similarity_score)}
|
42 |
result["Similarity Scores"] = similarity_scores
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
return result
|
45 |
|
46 |
# Define inputs and outputs for Gradio interface
|
|
|
47 |
mode_dropdown = gr.Dropdown(choices=["Compare two sentences", "Compare one to three"], label="Mode")
|
48 |
dimension_dropdown = gr.Dropdown(choices=["768", "512", "256", "128", "64"], label="Embedding Dimension")
|
49 |
sentence1_input = gr.Textbox(lines=2, placeholder="Enter the first sentence here...", label="Sentence 1")
|
@@ -51,19 +76,19 @@ sentence2_input = gr.Textbox(lines=2, placeholder="Enter the second sentence her
|
|
51 |
sentence3_input = gr.Textbox(lines=2, placeholder="Enter the third sentence here...", label="Sentence 3")
|
52 |
sentence4_input = gr.Textbox(lines=2, placeholder="Enter the fourth sentence here...", label="Sentence 4")
|
53 |
|
54 |
-
inputs = [mode_dropdown, sentence1_input, sentence2_input, sentence3_input, sentence4_input, dimension_dropdown]
|
55 |
outputs = gr.JSON(label="Detailed Similarity Scores")
|
56 |
|
57 |
examples = [
|
58 |
-
["Compare one to three", "يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه", "الشاب نائم بينما الأم تقود ابنتها إلى الحديقة", "رجل يقرأ الجريدة في الحديقة", "64"],
|
59 |
-
["Compare two sentences", "يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه", None, None, "64"]
|
60 |
]
|
61 |
|
62 |
# Create Gradio interface
|
63 |
gr.Interface(
|
64 |
fn=predict,
|
65 |
title="Arabic Sentence Similarity with Matryoshka Model",
|
66 |
-
description="Compute the semantic similarity between Arabic sentences using
|
67 |
inputs=inputs,
|
68 |
examples=examples,
|
69 |
outputs=outputs,
|
|
|
2 |
import gradio as gr
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
|
5 |
+
# Available models
|
6 |
+
model_dict = {
|
7 |
+
"Arabic-mpnet-base-all-nli-triplet": "Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet",
|
8 |
+
"Arabic-all-nli-triplet-Matryoshka": "Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
|
9 |
+
"Arabert-all-nli-triplet-Matryoshka": "Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka",
|
10 |
+
"Arabic-labse-Matryoshka": "Omartificial-Intelligence-Space/Arabic-labse-Matryoshka",
|
11 |
+
"Marbert-all-nli-triplet-Matryoshka": "Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka"
|
12 |
+
}
|
13 |
|
14 |
+
# Function to load the selected model
|
15 |
+
def load_model(model_name):
|
16 |
+
return SentenceTransformer(model_dict[model_name])
|
17 |
|
18 |
# Function to compute similarity and classify relationship
|
19 |
+
def predict(model_name, mode, sentence1, sentence2=None, sentence3=None, sentence4=None, dimension="64"):
|
20 |
+
model = load_model(model_name)
|
21 |
dimension = int(dimension)
|
22 |
result = {
|
23 |
"Selected Dimension": dimension,
|
|
|
51 |
similarity_scores = {"Similarity Score": float(similarity_score)}
|
52 |
result["Similarity Scores"] = similarity_scores
|
53 |
|
54 |
+
# Word-level similarity
|
55 |
+
if mode == "Compare two sentences" and sentence2 is not None:
|
56 |
+
words1 = sentence1.split()
|
57 |
+
words2 = sentence2.split()
|
58 |
+
word_pairs = [(w1, w2) for w1 in words1 for w2 in words2]
|
59 |
+
word_embeddings1 = model.encode(words1)[..., :dimension]
|
60 |
+
word_embeddings2 = model.encode(words2)[..., :dimension]
|
61 |
+
word_similarities = {
|
62 |
+
f"{w1} - {w2}": float(util.cos_sim(we1, we2))
|
63 |
+
for (w1, we1) in zip(words1, word_embeddings1)
|
64 |
+
for (w2, we2) in zip(words2, word_embeddings2)
|
65 |
+
}
|
66 |
+
result["Word-level Similarities"] = word_similarities
|
67 |
+
|
68 |
return result
|
69 |
|
70 |
# Define inputs and outputs for Gradio interface
|
71 |
+
model_dropdown = gr.Dropdown(choices=list(model_dict.keys()), label="Model")
|
72 |
mode_dropdown = gr.Dropdown(choices=["Compare two sentences", "Compare one to three"], label="Mode")
|
73 |
dimension_dropdown = gr.Dropdown(choices=["768", "512", "256", "128", "64"], label="Embedding Dimension")
|
74 |
sentence1_input = gr.Textbox(lines=2, placeholder="Enter the first sentence here...", label="Sentence 1")
|
|
|
76 |
sentence3_input = gr.Textbox(lines=2, placeholder="Enter the third sentence here...", label="Sentence 3")
|
77 |
sentence4_input = gr.Textbox(lines=2, placeholder="Enter the fourth sentence here...", label="Sentence 4")
|
78 |
|
79 |
+
inputs = [model_dropdown, mode_dropdown, sentence1_input, sentence2_input, sentence3_input, sentence4_input, dimension_dropdown]
|
80 |
outputs = gr.JSON(label="Detailed Similarity Scores")
|
81 |
|
82 |
examples = [
|
83 |
+
["Arabic-all-nli-triplet-Matryoshka", "Compare one to three", "يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه", "الشاب نائم بينما الأم تقود ابنتها إلى الحديقة", "رجل يقرأ الجريدة في الحديقة", "64"],
|
84 |
+
["Arabic-all-nli-triplet-Matryoshka", "Compare two sentences", "يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه", None, None, "64"]
|
85 |
]
|
86 |
|
87 |
# Create Gradio interface
|
88 |
gr.Interface(
|
89 |
fn=predict,
|
90 |
title="Arabic Sentence Similarity with Matryoshka Model",
|
91 |
+
description="Compute the semantic similarity between Arabic sentences using various SentenceTransformer models.",
|
92 |
inputs=inputs,
|
93 |
examples=examples,
|
94 |
outputs=outputs,
|