Kalemat / app.py
Omartificial-Intelligence-Space's picture
Update app.py
ca4f672 verified
raw
history blame
1.58 kB
import gradio as gr
from transformers import AutoTokenizer
chart_html = gr.HTML(label="Token Frequency Chart")
# Define a function to tokenize text and create visualization
def tokenize_text(text, tokenizer_name):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
tokenized_text = tokenizer.tokenize(text)
input_ids = tokenizer.convert_tokens_to_ids(tokenized_text)
decoded_text = tokenizer.decode(input_ids)
# Create visualization HTML
chart_html = create_token_frequency_chart(tokenized_text)
return f"Tokenized Text: {tokenized_text}\nInput IDs: {input_ids}\nDecoded Text: {decoded_text}", chart_html
# Define available tokenizers
tokenizer_names = [
"riotu-lab/ArabianGPT-01B",
"riotu-lab/ArabianGPT-03B",
"riotu-lab/ArabianGPT-08B",
"FreedomIntelligence/AceGPT-13B",
"FreedomIntelligence/AceGPT-7B",
"inception-mbzuai/jais-13b",
"aubmindlab/aragpt2-base",
"aubmindlab/aragpt2-medium",
"aubmindlab/aragpt2-large",
"aubmindlab/aragpt2-mega"
]
# Create the Gradio interface
iface = gr.Interface(
fn=tokenize_text,
inputs=[
gr.Textbox(label="Enter Text"),
gr.Dropdown(choices=tokenizer_names, label="Select Tokenizer"),
],
outputs="text",
title="Kalemat: Explore Arabic Tokenizers",
description="This interactive tool allows you to experiment with different Arabic tokenizers and see how they break down text into individual units. Try out various tokenizers and observe the tokenized form, input IDs, and decoded text to gain insights into the tokenization process",
)
# Launch the app
iface.launch()