Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,492 Bytes
d12ef82 16b7567 61dd04e 8f721a8 d12ef82 16b7567 d12ef82 61dd04e 515e29d d12ef82 16b7567 6a39ecf d12ef82 61dd04e d12ef82 6a39ecf d12ef82 61dd04e d12ef82 6a39ecf d12ef82 61dd04e 16b7567 6a39ecf d12ef82 16b7567 d12ef82 6a39ecf f5d713a 16b7567 891a967 d12ef82 9832c5a d12ef82 16b7567 d12ef82 16b7567 d12ef82 16b7567 61dd04e 16b7567 d12ef82 16b7567 61dd04e 16b7567 61dd04e 16b7567 61dd04e 16b7567 8f721a8 d12ef82 515e29d 102204e d12ef82 515e29d d12ef82 515e29d 16b7567 61dd04e 16b7567 de97bd5 16b7567 de97bd5 16b7567 8f721a8 d12ef82 515e29d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import spaces
import torch
import pandas as pd
import plotly.graph_objects as go
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
from sentence_transformers.util import cos_sim
# Check for GPU support and configure appropriately
device = "cuda" if torch.cuda.is_available() else "cpu"
zero = torch.Tensor([0]).to(device)
print(f"Device being used: {zero.device}")
@spaces.GPU
def evaluate_model(model_id, num_questions):
model = SentenceTransformer(model_id, device=device)
matryoshka_dimensions = [768, 512, 256, 128, 64]
# Prepare datasets (using slicing to limit number of samples)
datasets_info = [
{
"name": "Financial",
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
"split": f"train[:{num_questions}]", # Slicing to get the first num_questions samples
"columns": ("question", "context")
},
{
"name": "MLQA",
"dataset_id": "google/xtreme",
"subset": "MLQA.ar.ar",
"split": f"validation[:{num_questions}]", # Slicing to get the first num_questions samples
"columns": ("question", "context")
},
{
"name": "ARCD",
"dataset_id": "hsseinmz/arcd",
"split": f"train[-{num_questions}:]", # Slicing to get the last num_questions samples
"columns": ("question", "context")
}
]
evaluation_results = []
scores_by_dataset = {}
for dataset_info in datasets_info:
# Load the dataset with slicing
if "subset" in dataset_info:
dataset = load_dataset(dataset_info["dataset_id"], dataset_info["subset"], split=dataset_info["split"])
else:
dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
# Rename columns to 'anchor' and 'positive'
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
# Check if "id" column already exists before adding it
if "id" not in dataset.column_names:
dataset = dataset.add_column("id", range(len(dataset)))
# Prepare queries and corpus
corpus = dict(zip(dataset["id"], dataset["positive"]))
queries = dict(zip(dataset["id"], dataset["anchor"]))
# Create a mapping of relevant documents (1 in our case) for each query
relevant_docs = {q_id: [q_id] for q_id in queries}
matryoshka_evaluators = []
for dim in matryoshka_dimensions:
ir_evaluator = InformationRetrievalEvaluator(
queries=queries,
corpus=corpus,
relevant_docs=relevant_docs,
name=f"dim_{dim}",
truncate_dim=dim,
score_functions={"cosine": cos_sim},
)
matryoshka_evaluators.append(ir_evaluator)
evaluator = SequentialEvaluator(matryoshka_evaluators)
results = evaluator(model)
scores = []
for dim in matryoshka_dimensions:
key = f"dim_{dim}_cosine_ndcg@10"
score = results[key] if key in results else None
evaluation_results.append({
"Dataset": dataset_info["name"],
"Dimension": dim,
"Score": score
})
scores.append(score)
# Store scores by dataset for plot creation
scores_by_dataset[dataset_info["name"]] = scores
# Convert results to DataFrame for display
result_df = pd.DataFrame(evaluation_results)
# Generate bar charts for each dataset using Plotly
charts = []
color_scale = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087']
for dataset_name, scores in scores_by_dataset.items():
fig = go.Figure()
fig.add_trace(go.Bar(
x=[str(dim) for dim in matryoshka_dimensions],
y=scores,
marker_color=color_scale,
text=[f"{score:.3f}" if score else "N/A" for score in scores],
textposition='auto'
))
fig.update_layout(
title=f"{dataset_name} Evaluation",
xaxis_title="Embedding Dimension",
yaxis_title="NDCG@10 Score",
template="plotly_white"
)
charts.append(fig)
return result_df, charts[0], charts[1], charts[2]
# Define the Gradio interface
def display_results(model_name, num_questions):
result_df, chart1, chart2, chart3 = evaluate_model(model_name, num_questions)
return result_df, chart1, chart2, chart3
# Gradio interface with a slider to choose the number of questions (1 to 500)
demo = gr.Interface(
fn=display_results,
inputs=[
gr.Textbox(label="Enter a Hugging Face Model ID", placeholder="e.g., Omartificial-Intelligence-Space/GATE-AraBert-v1"),
gr.Slider(label="Number of Questions", minimum=1, maximum=500, step=1, value=500)
],
outputs=[
gr.Dataframe(label="Evaluation Results"),
gr.Plot(label="Financial Dataset"),
gr.Plot(label="MLQA Dataset"),
gr.Plot(label="ARCD Dataset")
],
title="Evaluation of Arabic Matroyshka Embedding on Retrieval Tasks",
description=(
"Evaluate your Embedding model or any Arabic Sentence Transformer model's performance on **context and question retrieval** for Arabic datasets for Enhancing RAG (Retrieval-Augmented Generation).\n"
"- **ARCD** evaluates short context retrieval performance.\n"
"- **MLQA Arabic** evaluates long context retrieval performance.\n"
"- **Arabic Financial Dataset** focuses on financial context retrieval.\n\n"
"**Evaluation Metric:**\n"
"The evaluation uses **NDCG@10** (Normalized Discounted Cumulative Gain), which measures how well the retrieved documents (contexts) match the query relevance.\n"
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
),
theme="default",
live=False,
css="footer {visibility: hidden;}"
)
demo.launch(share=True)
# Add the footer
print("\nCreated by Omar Najar | Omartificial Intelligence Space")
|