File size: 7,657 Bytes
d12ef82 16b7567 61dd04e 8f721a8 d12ef82 16b7567 d12ef82 f3caf2c 61dd04e 515e29d d12ef82 16b7567 eed4be8 d12ef82 61dd04e d12ef82 eed4be8 d12ef82 61dd04e d12ef82 6a39ecf eed4be8 d12ef82 61dd04e 16b7567 eed4be8 d12ef82 f3caf2c d12ef82 16b7567 d12ef82 eed4be8 f5d713a 16b7567 eed4be8 f3caf2c eed4be8 f3caf2c 891a967 d12ef82 f3caf2c 9832c5a f3caf2c d12ef82 f3caf2c d12ef82 f3caf2c d12ef82 f3caf2c d12ef82 16b7567 d12ef82 f3caf2c d12ef82 f3caf2c d12ef82 f3caf2c d12ef82 f3caf2c 16b7567 61dd04e f3caf2c 16b7567 d12ef82 16b7567 61dd04e 16b7567 f3caf2c 61dd04e 16b7567 61dd04e f3caf2c 61dd04e f3caf2c 61dd04e f3caf2c 61dd04e 16b7567 8f721a8 d12ef82 f3caf2c d12ef82 515e29d 102204e d12ef82 f3caf2c 515e29d d12ef82 f3caf2c 515e29d f3caf2c 515e29d f3caf2c 16b7567 61dd04e 16b7567 bb65861 16b7567 de97bd5 f3caf2c de97bd5 16b7567 8f721a8 d12ef82 2402c39 515e29d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import spaces
import torch
import pandas as pd
import plotly.graph_objects as go
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
from sentence_transformers.util import cos_sim
# Check for GPU support and configure appropriately
device = "cuda" if torch.cuda.is_available() else "cpu"
zero = torch.Tensor([0]).to(device)
print(f"Device being used: {zero.device}")
@spaces.GPU
def evaluate_model(model_id, num_questions):
model = SentenceTransformer(model_id, device=device)
matryoshka_dimensions = [768, 512, 256, 128, 64]
# Prepare datasets (Load entire split, then select num_questions)
datasets_info = [
{
"name": "Financial",
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
"split": "train", # Only train split
"columns": ("question", "context"),
"sample_size": num_questions
},
{
"name": "MLQA",
"dataset_id": "google/xtreme",
"subset": "MLQA.ar.ar",
"split": "validation", # Only validation split
"columns": ("question", "context"),
"sample_size": num_questions
},
{
"name": "ARCD",
"dataset_id": "hsseinmz/arcd",
"split": "train", # Only train split
"columns": ("question", "context"),
"sample_size": num_questions,
"last_rows": True # Take the last num_questions rows
}
]
evaluation_results = []
scores_by_dataset = {}
for dataset_info in datasets_info:
# Load the full dataset split and limit it afterward
if "subset" in dataset_info:
dataset = load_dataset(dataset_info["dataset_id"], dataset_info["subset"], split=dataset_info["split"])
else:
dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
# Select the required number of rows
if dataset_info.get("last_rows"):
dataset = dataset.select(
range(len(dataset) - dataset_info["sample_size"], len(dataset))) # Take last n rows
else:
dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset)))) # Take first n rows
# Rename columns to 'anchor' and 'positive'
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
# Check if "id" column already exists before adding it
if "id" not in dataset.column_names:
dataset = dataset.add_column("id", range(len(dataset)))
# Prepare queries and corpus
corpus = dict(zip(dataset["id"], dataset["positive"]))
queries = dict(zip(dataset["id"], dataset["anchor"]))
# Create a mapping of relevant documents (1 in our case) for each query
relevant_docs = {q_id: [q_id] for q_id in queries}
matryoshka_evaluators = []
for dim in matryoshka_dimensions:
ir_evaluator = InformationRetrievalEvaluator(
queries=queries,
corpus=corpus,
relevant_docs=relevant_docs,
name=f"dim_{dim}",
truncate_dim=dim,
score_functions={"cosine": cos_sim}
)
matryoshka_evaluators.append(ir_evaluator)
evaluator = SequentialEvaluator(matryoshka_evaluators)
results = evaluator(model)
scores_ndcg = []
scores_mrr = []
for dim in matryoshka_dimensions:
ndcg_key = f"dim_{dim}_cosine_ndcg@10"
mrr_key = f"dim_{dim}_cosine_mrr@10"
ndcg_score = results[ndcg_key] if ndcg_key in results else None
mrr_score = results[mrr_key] if mrr_key in results else None
evaluation_results.append({
"Dataset": dataset_info["name"],
"Dimension": dim,
"NDCG@10": ndcg_score,
"MRR@10": mrr_score
})
scores_ndcg.append(ndcg_score)
scores_mrr.append(mrr_score)
# Store scores by dataset for plot creation
scores_by_dataset[dataset_info["name"]] = {
"NDCG@10": scores_ndcg,
"MRR@10": scores_mrr
}
# Convert results to DataFrame for display
result_df = pd.DataFrame(evaluation_results)
# Generate bar charts for each dataset using Plotly
charts = []
color_scale_ndcg = '#a05195'
color_scale_mrr = '#2f4b7c'
for dataset_name, scores in scores_by_dataset.items():
fig = go.Figure()
# NDCG@10 bars
fig.add_trace(go.Bar(
x=[str(dim) for dim in matryoshka_dimensions],
y=scores["NDCG@10"],
name="NDCG@10",
marker_color=color_scale_ndcg,
text=[f"{score:.3f}" if score else "N/A" for score in scores["NDCG@10"]],
textposition='auto'
))
# MRR@10 bars
fig.add_trace(go.Bar(
x=[str(dim) for dim in matryoshka_dimensions],
y=scores["MRR@10"],
name="MRR@10",
marker_color=color_scale_mrr,
text=[f"{score:.3f}" if score else "N/A" for score in scores["MRR@10"]],
textposition='auto'
))
fig.update_layout(
title=f"{dataset_name} Evaluation",
xaxis_title="Embedding Dimension",
yaxis_title="Score",
barmode='group', # Group bars
template="plotly_white"
)
charts.append(fig)
return result_df, charts[0], charts[1], charts[2]
# Define the Gradio interface
def display_results(model_name, num_questions):
result_df, chart1, chart2, chart3 = evaluate_model(model_name, num_questions)
return result_df, chart1, chart2, chart3
# Gradio interface with a slider to choose the number of questions (1 to 500)
demo = gr.Interface(
fn=display_results,
inputs=[
gr.Textbox(label="Enter a Hugging Face Model ID",
placeholder="e.g., Omartificial-Intelligence-Space/GATE-AraBert-v1"),
gr.Slider(label="Number of Questions", minimum=1, maximum=500, step=1, value=500)
],
outputs=[
gr.Dataframe(label="Evaluation Results"),
gr.Plot(label="Financial Dataset"),
gr.Plot(label="MLQA Dataset"),
gr.Plot(label="ARCD Dataset")
],
title="MERAA : Matryoshka Embedding Retrieval Assessment for Arabic",
description=(
"Evaluate your Embedding model or any Arabic Sentence Transformer model's performance on **context and question retrieval** for Arabic datasets for Enhancing RAG (Retrieval-Augmented Generation).\n"
"- **ARCD** evaluates short context retrieval performance.\n"
"- **MLQA Arabic** evaluates long context retrieval performance.\n"
"- **Arabic Financial Dataset** focuses on financial context retrieval.\n\n"
"**Evaluation Metrics:**\n"
"The evaluation uses **NDCG@10** and **MRR@10**, which measure how well the retrieved documents (contexts) match the query relevance.\n"
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
),
theme="default",
live=False,
css="footer {visibility: hidden;}"
)
demo.launch(debug=True)
# Add the footer
print("\nCreated by Omar Najar | Omartificial Intelligence Space")
|