Omartificial-Intelligence-Space's picture
update app.py
102204e verified
raw
history blame
6.62 kB
import gradio as gr
import spaces
import torch
import pandas as pd
import matplotlib.pyplot as plt
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
from sentence_transformers.util import cos_sim
# Check for GPU support and configure appropriately
device = "cuda" if torch.cuda.is_available() else "cpu"
zero = torch.Tensor([0]).to(device)
print(f"Device being used: {zero.device}")
@spaces.GPU
def evaluate_model(model_id):
model = SentenceTransformer(model_id, device=device)
matryoshka_dimensions = [768, 512, 256, 128, 64]
# Prepare datasets
datasets_info = [
{
"name": "Arabic Financial Dataset (Financial Evaluation)",
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
"split": "train",
"size": 7000,
"columns": ("question", "context"),
"sample_size": 500
},
{
"name": "MLQA Arabic (Long Context Evaluation)",
"dataset_id": "google/xtreme",
"subset": "MLQA.ar.ar",
"split": "validation",
"size": 500,
"columns": ("question", "context"),
"sample_size": 500
},
{
"name": "ARCD (Short Context Evaluation)",
"dataset_id": "hsseinmz/arcd",
"split": "train",
"size": None,
"columns": ("question", "context"),
"sample_size": 500,
"last_rows": True # Take the last 500 rows
}
]
evaluation_results = []
scores_by_dataset = {}
for dataset_info in datasets_info:
# Load the dataset with subset if available
if "subset" in dataset_info:
dataset = load_dataset(dataset_info["dataset_id"], dataset_info["subset"], split=dataset_info["split"])
else:
dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
# Take last 500 rows if specified
if dataset_info.get("last_rows"):
dataset = dataset.select(range(len(dataset) - dataset_info["sample_size"], len(dataset)))
else:
dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset))))
# Rename columns
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
# Check if "id" column already exists before adding it
if "id" not in dataset.column_names:
dataset = dataset.add_column("id", range(len(dataset)))
# Prepare queries and corpus
corpus = dict(zip(dataset["id"], dataset["positive"]))
queries = dict(zip(dataset["id"], dataset["anchor"]))
# Create a mapping of relevant documents (1 in our case) for each query
relevant_docs = {q_id: [q_id] for q_id in queries}
matryoshka_evaluators = []
for dim in matryoshka_dimensions:
ir_evaluator = InformationRetrievalEvaluator(
queries=queries,
corpus=corpus,
relevant_docs=relevant_docs,
name=f"dim_{dim}",
truncate_dim=dim,
score_functions={"cosine": cos_sim},
)
matryoshka_evaluators.append(ir_evaluator)
evaluator = SequentialEvaluator(matryoshka_evaluators)
results = evaluator(model)
scores = []
for dim in matryoshka_dimensions:
key = f"dim_{dim}_cosine_ndcg@10"
score = results[key] if key in results else None
evaluation_results.append({
"Dataset": dataset_info["name"],
"Dimension": dim,
"Score": score
})
scores.append(score)
# Store scores by dataset for bar chart creation
scores_by_dataset[dataset_info["name"]] = scores
# Convert results to DataFrame for display
result_df = pd.DataFrame(evaluation_results)
# Generate bar charts for each dataset
charts = []
colors = ['#FF5733', '#33FF57', '#3357FF', '#FF33C4', '#F3FF33'] # Creative color palette
for dataset_name, scores in scores_by_dataset.items():
fig, ax = plt.subplots()
ax.bar([str(dim) for dim in matryoshka_dimensions], scores, color=colors)
ax.set_title(f"{dataset_name} Evaluation Scores", fontsize=16, color='darkblue')
ax.set_xlabel("Embedding Dimension", fontsize=12)
ax.set_ylabel("NDCG@10 Score", fontsize=12)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.tight_layout()
charts.append(fig)
return result_df, charts[0], charts[1], charts[2]
# Define the Gradio interface
def display_results(model_name):
result_df, chart1, chart2, chart3 = evaluate_model(model_name)
return result_df, chart1, chart2, chart3
demo = gr.Interface(
fn=display_results,
inputs=gr.Textbox(label="Enter Your Embedding Model ID", placeholder="e.g., Omartificial-Intelligence-Space/GATE-AraBert-v1"),
outputs=[
gr.Dataframe(label="Evaluation Results"),
gr.Plot(label="Arabic Financial Dataset (Financial Evaluation)"),
gr.Plot(label="MLQA Arabic (Long Context Evaluation)"),
gr.Plot(label="ARCD (Short Context Evaluation)")
],
title="Evaluation of Arabic Matryoshka Embedding Models on Retreival Tasks ",
description=(
"Evaluate your Sentence Transformer model's performance on **context and question retrieval** for Arabic datasets for enhancing Arabic RAG.\n"
"- **ARCD** evaluates short context retrieval performance.\n"
"- **MLQA Arabic** evaluates long context retrieval performance.\n"
"- **Arabic Financial Dataset** focuses on financial context retrieval.\n\n"
"**Evaluation Metric:**\n"
"The evaluation uses **NDCG@10** (Normalized Discounted Cumulative Gain), which measures how well the retrieved documents (contexts) match the query relevance.\n"
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
),
theme="default",
live=False,
css="footer {visibility: hidden;}"
)
demo.launch(share=True)
demo.launch(share=True)
# Add the footer
print("\nCreated by Omar Najar | Omartificial Intelligence Space")