Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the necessary packages
|
2 |
+
import os
|
3 |
+
from langchain.embeddings import OpenAIEmbeddings
|
4 |
+
from langchain.document_loaders import YoutubeLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.llms import OpenAI
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain.chains import LLMChain
|
10 |
+
import textwrap
|
11 |
+
import streamlit as st
|
12 |
+
from apikey import apikey
|
13 |
+
|
14 |
+
# Load OpenAI API key and define directory to store the data
|
15 |
+
os.environ["OPENAI_API_KEY"] = apikey
|
16 |
+
persist_directory = "../../data/processed"
|
17 |
+
|
18 |
+
# Load the OpenAI Embeddings, LLM , PromptTemplate and LLMChain
|
19 |
+
embeddings = OpenAIEmbeddings()
|
20 |
+
llm = OpenAI(temperature=0)
|
21 |
+
# Define the template for the prompt
|
22 |
+
template = """You can provide answers about YouTube videos using their transcripts.
|
23 |
+
|
24 |
+
For the question: {question}
|
25 |
+
Please refer to the video transcript: {docs_page_content}
|
26 |
+
|
27 |
+
Rely solely on the transcript's factual data to respond.
|
28 |
+
|
29 |
+
If the information isn't sufficient, simply state "I don't know".
|
30 |
+
|
31 |
+
Ensure your answers are comprehensive and in-depth.
|
32 |
+
"""
|
33 |
+
prompt = PromptTemplate(
|
34 |
+
input_variables=["question", "docs_page_content"],
|
35 |
+
template=template,
|
36 |
+
)
|
37 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
38 |
+
|
39 |
+
|
40 |
+
# Setup streamlit
|
41 |
+
st.title("YouTube Video Transcript Analyzer")
|
42 |
+
# *** YOUR VIDEO URL and QUESTION ***
|
43 |
+
video_url = st.text_input("Enter the YouTube video URL:")
|
44 |
+
question = st.text_input("Enter your question about the video:")
|
45 |
+
# add submit button
|
46 |
+
# submit = st.button("Submit")
|
47 |
+
#
|
48 |
+
if video_url and question:
|
49 |
+
# load the video transcript
|
50 |
+
loader = YoutubeLoader.from_youtube_url(video_url, add_video_info=True)
|
51 |
+
# show the video title and author
|
52 |
+
info = loader._get_video_info()
|
53 |
+
st.write("**Title:**", info["title"])
|
54 |
+
st.write("**Author:**", info["author"])
|
55 |
+
# Split the transcript into chunks with 1500 characters and 150 characters overlap
|
56 |
+
transcript = loader.load()
|
57 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
58 |
+
docs = text_splitter.split_documents(transcript)
|
59 |
+
# docs[0].page_content
|
60 |
+
# Create the vector database which will be used to search for similar sentences
|
61 |
+
vectordb = Chroma.from_documents(
|
62 |
+
documents=docs, embedding=embeddings, persist_directory=persist_directory
|
63 |
+
)
|
64 |
+
|
65 |
+
# Search for the most similar sentences to the question and concatenate top 3 vectors
|
66 |
+
docs = vectordb.similarity_search(query=question, k=3)
|
67 |
+
docs_page_content = " ".join([doc.page_content for doc in docs])
|
68 |
+
# docs[0].page_content
|
69 |
+
# send the question and the top 3 sentences to the LLMChain and print the response
|
70 |
+
response = chain.run(question=question, docs_page_content=docs_page_content)
|
71 |
+
st.write(textwrap.fill(response, width=85))
|