Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,317 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
-
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
|
51 |
-
|
|
|
|
|
|
|
52 |
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
]
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
gr.on(
|
138 |
-
triggers=[
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
inputs=[
|
|
|
141 |
prompt,
|
142 |
negative_prompt,
|
|
|
|
|
143 |
seed,
|
144 |
-
randomize_seed,
|
145 |
width,
|
146 |
height,
|
147 |
guidance_scale,
|
148 |
num_inference_steps,
|
|
|
|
|
149 |
],
|
150 |
outputs=[result, seed],
|
151 |
)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import spaces
|
|
|
|
|
8 |
import torch
|
9 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
10 |
+
from typing import Tuple
|
11 |
|
12 |
+
css = '''
|
13 |
+
.gradio-container{max-width: 575px !important}
|
14 |
+
h1{text-align:center}
|
15 |
+
footer {
|
16 |
+
visibility: hidden
|
17 |
+
}
|
18 |
+
'''
|
19 |
|
20 |
+
DESCRIPTIONXX = """## LENNOX TEXT 2 IMAGE🥠"""
|
|
|
21 |
|
22 |
+
examples = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
"Neon-lit futuristic city at night, towering skyscrapers, flying cars, and glowing billboards. People in cyberpunk attire walk below a starry sky.",
|
25 |
+
"Mystical forest with glowing plants, bioluminescent trees, and magical creatures like fairies and fireflies. Mist and soft light create a dreamlike feel.",
|
26 |
+
"Medieval knight in detailed armor on a cliff, sword in hand, sunset light highlighting a kingdom and castle in the background.",
|
27 |
+
"Modern, minimalist living room with soft gray and wood tones, large window with natural light, a simple couch, and potted plants for a cozy vibe.",
|
28 |
+
"Majestic lion on a rock in the African savanna at sunrise, mane blowing in the wind, with acacia trees and golden grass under warm light."
|
29 |
+
]
|
30 |
|
31 |
+
MODEL_OPTIONS = {
|
32 |
+
|
33 |
+
"LENNOX-AI V2.0": "SG161222/RealVisXL_V5.0_Lightning",
|
34 |
+
"LENNOX-AI V1.0": "SG161222/RealVisXL_V4.0_Lightning",
|
35 |
+
}
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
38 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
39 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
40 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
41 |
|
42 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
43 |
|
44 |
+
style_list = [
|
45 |
+
{
|
46 |
+
"name": "3840 x 2160",
|
47 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
48 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"name": "2560 x 1440",
|
52 |
+
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
53 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"name": "HD+",
|
57 |
+
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
58 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"name": "Style Zero",
|
62 |
+
"prompt": "{prompt}",
|
63 |
+
"negative_prompt": "",
|
64 |
+
},
|
65 |
]
|
66 |
|
67 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
68 |
+
DEFAULT_STYLE_NAME = "3840 x 2160"
|
69 |
+
STYLE_NAMES = list(styles.keys())
|
|
|
|
|
|
|
70 |
|
71 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
72 |
+
if style_name in styles:
|
73 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
74 |
+
else:
|
75 |
+
p, n = styles[DEFAULT_STYLE_NAME]
|
76 |
|
77 |
+
if not negative:
|
78 |
+
negative = ""
|
79 |
+
return p.replace("{prompt}", positive), n + negative
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
def load_and_prepare_model(model_id):
|
82 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
83 |
+
model_id,
|
84 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
85 |
+
use_safetensors=True,
|
86 |
+
add_watermarker=False,
|
87 |
+
).to(device)
|
88 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
89 |
+
|
90 |
+
if USE_TORCH_COMPILE:
|
91 |
+
pipe.compile()
|
92 |
+
|
93 |
+
if ENABLE_CPU_OFFLOAD:
|
94 |
+
pipe.enable_model_cpu_offload()
|
95 |
+
|
96 |
+
return pipe
|
97 |
|
98 |
+
# Preload and compile both models
|
99 |
+
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
100 |
|
101 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
def save_image(img):
|
104 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
105 |
+
img.save(unique_name)
|
106 |
+
return unique_name
|
|
|
|
|
|
|
107 |
|
108 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
109 |
+
if randomize_seed:
|
110 |
+
seed = random.randint(0, MAX_SEED)
|
111 |
+
return seed
|
112 |
|
113 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
114 |
+
def generate(
|
115 |
+
model_choice: str,
|
116 |
+
prompt: str,
|
117 |
+
negative_prompt: str = "",
|
118 |
+
use_negative_prompt: bool = False,
|
119 |
+
style_selection: str = DEFAULT_STYLE_NAME,
|
120 |
+
seed: int = 1,
|
121 |
+
width: int = 1024,
|
122 |
+
height: int = 1024,
|
123 |
+
guidance_scale: float = 3,
|
124 |
+
num_inference_steps: int = 25,
|
125 |
+
randomize_seed: bool = False,
|
126 |
+
use_resolution_binning: bool = True,
|
127 |
+
num_images: int = 1,
|
128 |
+
progress=gr.Progress(track_tqdm=True),
|
129 |
+
):
|
130 |
+
global models
|
131 |
+
pipe = models[model_choice]
|
132 |
+
|
133 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
134 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
135 |
|
136 |
+
prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
options = {
|
139 |
+
"prompt": [prompt] * num_images,
|
140 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
141 |
+
"width": width,
|
142 |
+
"height": height,
|
143 |
+
"guidance_scale": guidance_scale,
|
144 |
+
"num_inference_steps": num_inference_steps,
|
145 |
+
"generator": generator,
|
146 |
+
"output_type": "pil",
|
147 |
+
}
|
148 |
+
|
149 |
+
if use_resolution_binning:
|
150 |
+
options["use_resolution_binning"] = True
|
151 |
+
|
152 |
+
images = []
|
153 |
+
for i in range(0, num_images, BATCH_SIZE):
|
154 |
+
batch_options = options.copy()
|
155 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
156 |
+
if "negative_prompt" in batch_options:
|
157 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
158 |
+
images.extend(pipe(**batch_options).images)
|
159 |
+
|
160 |
+
image_paths = [save_image(img) for img in images]
|
161 |
+
return image_paths, seed
|
162 |
+
|
163 |
+
|
164 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
165 |
+
gr.Markdown(DESCRIPTIONXX)
|
166 |
+
with gr.Row():
|
167 |
+
prompt = gr.Text(
|
168 |
+
label="Prompt",
|
169 |
+
show_label=False,
|
170 |
+
max_lines=1,
|
171 |
+
placeholder="Enter your prompt",
|
172 |
+
container=False,
|
173 |
+
)
|
174 |
+
run_button = gr.Button("Run", scale=0)
|
175 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
176 |
|
177 |
+
with gr.Row():
|
178 |
+
model_choice = gr.Dropdown(
|
179 |
+
label="Model Selection⬇️",
|
180 |
+
choices=list(MODEL_OPTIONS.keys()),
|
181 |
+
value="LENNOX-AI V2.0"
|
182 |
+
)
|
183 |
+
|
184 |
+
with gr.Accordion("Advanced options", open=False, visible=False):
|
185 |
+
style_selection = gr.Radio(
|
186 |
+
show_label=True,
|
187 |
+
container=True,
|
188 |
+
interactive=True,
|
189 |
+
choices=STYLE_NAMES,
|
190 |
+
value=DEFAULT_STYLE_NAME,
|
191 |
+
label="Quality Style",
|
192 |
+
)
|
193 |
+
num_images = gr.Slider(
|
194 |
+
label="Number of Images",
|
195 |
+
minimum=1,
|
196 |
+
maximum=5,
|
197 |
+
step=1,
|
198 |
+
value=1,
|
199 |
+
)
|
200 |
+
with gr.Row():
|
201 |
+
with gr.Column(scale=1):
|
202 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
203 |
+
negative_prompt = gr.Text(
|
204 |
+
label="Negative prompt",
|
205 |
+
max_lines=5,
|
206 |
+
lines=4,
|
207 |
+
placeholder="Enter a negative prompt",
|
208 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
209 |
+
visible=True,
|
210 |
)
|
211 |
+
seed = gr.Slider(
|
212 |
+
label="Seed",
|
213 |
+
minimum=0,
|
214 |
+
maximum=MAX_SEED,
|
215 |
+
step=1,
|
216 |
+
value=0,
|
217 |
+
)
|
218 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
219 |
+
with gr.Row():
|
220 |
+
width = gr.Slider(
|
221 |
+
label="Width",
|
222 |
+
minimum=512,
|
223 |
+
maximum=MAX_IMAGE_SIZE,
|
224 |
+
step=8,
|
225 |
+
value=1024,
|
226 |
+
)
|
227 |
+
height = gr.Slider(
|
228 |
+
label="Height",
|
229 |
+
minimum=512,
|
230 |
+
maximum=MAX_IMAGE_SIZE,
|
231 |
+
step=8,
|
232 |
+
value=1024,
|
233 |
+
)
|
234 |
+
with gr.Row():
|
235 |
+
guidance_scale = gr.Slider(
|
236 |
+
label="Guidance Scale",
|
237 |
+
minimum=0.1,
|
238 |
+
maximum=6,
|
239 |
+
step=0.1,
|
240 |
+
value=3.0,
|
241 |
+
)
|
242 |
+
num_inference_steps = gr.Slider(
|
243 |
+
label="Number of inference steps",
|
244 |
+
minimum=1,
|
245 |
+
maximum=60,
|
246 |
+
step=1,
|
247 |
+
value=28,
|
248 |
+
)
|
249 |
|
250 |
+
gr.Examples(
|
251 |
+
examples=examples,
|
252 |
+
inputs=prompt,
|
253 |
+
cache_examples=False
|
254 |
+
)
|
255 |
+
|
256 |
+
use_negative_prompt.change(
|
257 |
+
fn=lambda x: gr.update(visible=x),
|
258 |
+
inputs=use_negative_prompt,
|
259 |
+
outputs=negative_prompt,
|
260 |
+
api_name=False,
|
261 |
+
)
|
262 |
+
|
263 |
gr.on(
|
264 |
+
triggers=[
|
265 |
+
prompt.submit,
|
266 |
+
negative_prompt.submit,
|
267 |
+
run_button.click,
|
268 |
+
],
|
269 |
+
fn=generate,
|
270 |
inputs=[
|
271 |
+
model_choice,
|
272 |
prompt,
|
273 |
negative_prompt,
|
274 |
+
use_negative_prompt,
|
275 |
+
style_selection,
|
276 |
seed,
|
|
|
277 |
width,
|
278 |
height,
|
279 |
guidance_scale,
|
280 |
num_inference_steps,
|
281 |
+
randomize_seed,
|
282 |
+
num_images,
|
283 |
],
|
284 |
outputs=[result, seed],
|
285 |
)
|
286 |
|
287 |
+
|
288 |
+
#gr.Markdown("### Image Gallery")
|
289 |
+
#predefined_gallery = gr.Gallery(label="Image Gallery", columns=3, show_label=False, value=load_predefined_images())
|
290 |
+
|
291 |
+
gr.Markdown(
|
292 |
+
"""
|
293 |
+
<div style="text-align: justify;">
|
294 |
+
🖌️ Image Generation by Omindu Dissanayaka: Using LENNOX-AI V2.0 and LENNOX-AI V1.0 models for high-quality images. This demo space showcases image generation with the Stable Diffusion XL model variants, available for experimenting with different styles and models.
|
295 |
+
</div>
|
296 |
+
"""
|
297 |
+
)
|
298 |
+
|
299 |
+
gr.Markdown(
|
300 |
+
"""
|
301 |
+
<div style="text-align: justify;">
|
302 |
+
🎨 Explore the demo space for Stable Diffusion XL, designed by Omindu Dissanayaka. Generate images with diverse styles and models for higher-quality results. Experiment with sample prompts to create unique, high-quality images.
|
303 |
+
</div>
|
304 |
+
"""
|
305 |
+
)
|
306 |
+
|
307 |
+
gr.Markdown(
|
308 |
+
"""
|
309 |
+
<div style="text-align: justify;">
|
310 |
+
⚠️ Disclaimer: Users are responsible for ensuring that generated content complies with ethical standards.
|
311 |
+
</div>
|
312 |
+
"""
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
if __name__ == "__main__":
|
317 |
+
demo.queue(max_size=50).launch(show_api=True)
|