Spaces:
Runtime error
Runtime error
File size: 3,077 Bytes
fe48f07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import streamlit as st
from pdf2image import convert_from_path
import google.generativeai as genai
import os
import imghdr
import PIL.Image
import json
import tempfile
from dotenv import load_dotenv
load_dotenv()
# Configure Gemini API
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-1.5-flash')
def system_prompt() -> str:
return """You are a Invoice/Receipt Analysing tool. Analyse the image of the invoice provided and extract information from the following receipt image and return a JSON object with these exact keys:Customer_Details,Products,Total Amount.
Rules:
1. For total_cost, use the highest monetary value in the text.
2. Customer_Details will consist of another json object consisting the keys Customer_Name,Customer_Address,Email Address,Phone Number,Customer ID,Billing Address,Shipping Address,Account Number,Tax ID/VAT Number,Company Name,Payment Method.
3.Products will consist of another json object consisting of keys Product_name_1,quantity,unit_price.
6. If any value is not found, return null.
7. If all values are null, return null.
Ensure the strictly that output is a valid JSON object containing strictly the above keys, without any explanations.
Generate a JSON response in the following format without using the ```json block. Ensure the output is properly formatted as plain text JSON.
"""
def get_invoice_details(image):
response = model.generate_content([system_prompt(), image], stream=True)
response.resolve()
return response.text
def process_file(file):
images = []
if file.type == "application/pdf":
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(file.getvalue())
tmp_file_path = tmp_file.name
pdf_images = convert_from_path(tmp_file_path)
for img in pdf_images:
images.append(img)
os.unlink(tmp_file_path)
elif file.type.startswith('image'):
image = PIL.Image.open(file)
images.append(image)
else:
st.error(f"Unsupported file type: {file.type}")
return None
return images
def main():
st.title("Invoice Analyzer")
uploaded_file = st.file_uploader("Choose an image or PDF file", type=["jpg", "jpeg", "png", "pdf"])
if uploaded_file is not None:
images = process_file(uploaded_file)
if images:
for i, img in enumerate(images):
st.image(img, caption=f"Page {i+1}", use_column_width=True)
with st.spinner(f"Analyzing page {i+1}..."):
json_output = get_invoice_details(img)
try:
parsed_json = json.loads(json_output)
st.json(parsed_json)
except json.JSONDecodeError:
st.error(f"Failed to parse JSON for page {i+1}. Raw output:")
st.text(json_output)
if __name__ == "__main__":
main() |