Omkar008's picture
Update main.py
8aa59e6 verified
raw
history blame
4.72 kB
from fastapi import FastAPI, Request, BackgroundTasks
import json
import io
from openai import OpenAI
from supabase import create_client
from typing import List, Dict, Any
import asyncio
import logging
from datetime import datetime
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
client = Client(api_key=os.getenv('OPENAI_API_KEY'),organization=os.getenv('ORG_ID'))
url: str = os.getenv('SUPABASE_URL')
key: str = os.getenv('SUPABASE_KEY')
supabase: Client = create_client(url, key)
@app.post("/send/batch_processing")
async def testv1(request: Request, background_tasks: BackgroundTasks):
try:
dataset = await request.json()
# Create initial batch job record
save_data = {
'batch_job_id': f"batch_{datetime.utcnow().strftime('%Y%m%d_%H%M%S')}",
"batch_job_status": False,
"created_at": datetime.utcnow().isoformat()
}
response = (
supabase.table("batch_processing_details")
.insert(save_data)
.execute()
)
# Add processing to background tasks
background_tasks.add_task(process_batch_job, dataset, save_data['batch_job_id'])
return {'data': 'Batch job is scheduled!', 'batch_job_id': save_data['batch_job_id']},
except Exception as e:
return {'error': str(e)}
async def process_batch_job(dataset: Dict[str, Any], batch_job_id: str):
"""
Background task to process the batch job
"""
try:
logger.info(f"Starting batch processing for job {batch_job_id}")
system_prompt = '''
Your goal is to extract movie categories from movie descriptions, as well as a 1-sentence summary for these movies.
You will be provided with a movie description, and you will output a json object containing the following information:
{
categories: string[] // Array of categories based on the movie description,
summary: string // 1-sentence summary of the movie based on the movie description
}
Categories refer to the genre or type of the movie, like "action", "romance", "comedy", etc. Keep category names simple and use only lower case letters.
Movies can have several categories, but try to keep it under 3-4. Only mention the categories that are the most obvious based on the description.
'''
openai_tasks = []
for ds in dataset.get('data'):
id = ds.get('imdb_id')
description = ds.get('Description')
task = {
"custom_id": f"task-{id}",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": "gpt-4o-mini",
"temperature": 0.1,
"response_format": {
"type": "json_object"
},
"messages": [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": description
}
]
}
}
openai_tasks.append(task)
# Create batch file
json_obj = io.BytesIO()
for obj in openai_tasks:
json_obj.write((json.dumps(obj) + '\n').encode('utf-8'))
batch_file = client.files.create(
file=json_obj,
purpose="batch"
)
# Create batch job
batch_job = client.batches.create(
input_file_id=batch_file.id,
endpoint="/v1/chat/completions",
completion_window="24h"
)
# Update status in Supabase
supabase.table("batch_processing_details").update({
"batch_job_status": True,
"completed_at": datetime.utcnow().isoformat()
}).match({"batch_job_id": batch_job_id}).execute()
logger.info(f"Batch job {batch_job_id} processed successfully")
except Exception as e:
logger.error(f"Error processing batch job {batch_job_id}: {str(e)}")
# Update status with error
supabase.table("batch_processing_details").update({
"batch_job_status": False,
"error": str(e),
"completed_at": datetime.utcnow().isoformat()
}).eq({"batch_job_id": batch_job_id}).execute()