Omkar008 commited on
Commit
48421ca
·
verified ·
1 Parent(s): 5def9d3

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +129 -0
main.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Request, BackgroundTasks
2
+ import json
3
+ import io
4
+ from openai import OpenAI
5
+ from supabase import create_client
6
+ from typing import List, Dict, Any
7
+ import asyncio
8
+ import logging
9
+ from datetime import datetime
10
+
11
+
12
+
13
+ # Initialize logging
14
+ logging.basicConfig(level=logging.INFO)
15
+ logger = logging.getLogger(__name__)
16
+
17
+ app = FastAPI()
18
+ client = OpenAI() # Initialize your OpenAI client with proper credentials
19
+ supabase = create_client("YOUR_SUPABASE_URL", "YOUR_SUPABASE_KEY") # Initialize Supabase client
20
+
21
+ async def process_batch_job(dataset: Dict[str, Any], batch_job_id: str):
22
+ """
23
+ Background task to process the batch job
24
+ """
25
+ try:
26
+ logger.info(f"Starting batch processing for job {batch_job_id}")
27
+
28
+ system_prompt = '''
29
+ Your goal is to extract movie categories from movie descriptions, as well as a 1-sentence summary for these movies.
30
+ You will be provided with a movie description, and you will output a json object containing the following information:
31
+
32
+ {
33
+ categories: string[] // Array of categories based on the movie description,
34
+ summary: string // 1-sentence summary of the movie based on the movie description
35
+ }
36
+
37
+ Categories refer to the genre or type of the movie, like "action", "romance", "comedy", etc. Keep category names simple and use only lower case letters.
38
+ Movies can have several categories, but try to keep it under 3-4. Only mention the categories that are the most obvious based on the description.
39
+ '''
40
+
41
+ openai_tasks = []
42
+ for ds in dataset.get('data'):
43
+ id = ds.get('imdb_id')
44
+ description = ds.get('Description')
45
+ task = {
46
+ "custom_id": f"task-{id}",
47
+ "method": "POST",
48
+ "url": "/v1/chat/completions",
49
+ "body": {
50
+ "model": "gpt-4o-mini",
51
+ "temperature": 0.1,
52
+ "response_format": {
53
+ "type": "json_object"
54
+ },
55
+ "messages": [
56
+ {
57
+ "role": "system",
58
+ "content": system_prompt
59
+ },
60
+ {
61
+ "role": "user",
62
+ "content": description
63
+ }
64
+ ]
65
+ }
66
+ }
67
+ openai_tasks.append(task)
68
+
69
+ # Create batch file
70
+ json_obj = io.BytesIO()
71
+ for obj in openai_tasks:
72
+ json_obj.write((json.dumps(obj) + '\n').encode('utf-8'))
73
+
74
+ batch_file = client.files.create(
75
+ file=json_obj,
76
+ purpose="batch"
77
+ )
78
+
79
+ # Create batch job
80
+ batch_job = client.batches.create(
81
+ input_file_id=batch_file.id,
82
+ endpoint="/v1/chat/completions",
83
+ completion_window="24h"
84
+ )
85
+
86
+ # Update status in Supabase
87
+ supabase.table("batch_processing_details").update({
88
+ "batch_job_status": True,
89
+ "completed_at": datetime.utcnow().isoformat()
90
+ }).match({"batch_job_id": batch_job_id}).execute()
91
+
92
+ logger.info(f"Batch job {batch_job_id} processed successfully")
93
+
94
+ except Exception as e:
95
+ logger.error(f"Error processing batch job {batch_job_id}: {str(e)}")
96
+ # Update status with error
97
+ supabase.table("batch_processing_details").update({
98
+ "batch_job_status": False,
99
+ "error": str(e),
100
+ "completed_at": datetime.utcnow().isoformat()
101
+ }).eq({"batch_job_id": batch_job_id}).execute()
102
+
103
+ @app.post("/test/v1")
104
+ async def testv1(request: Request, background_tasks: BackgroundTasks):
105
+ try:
106
+ dataset = await request.json()
107
+
108
+ # Create initial batch job record
109
+ save_data = {
110
+ 'batch_job_id': f"batch_{datetime.utcnow().strftime('%Y%m%d_%H%M%S')}",
111
+ "batch_job_status": False,
112
+ "created_at": datetime.utcnow().isoformat()
113
+ }
114
+
115
+ response = (
116
+ supabase.table("batch_processing_details")
117
+ .insert(save_data)
118
+ .execute()
119
+ )
120
+
121
+ # Add processing to background tasks
122
+ background_tasks.add_task(process_batch_job, dataset, save_data['batch_job_id'])
123
+
124
+ return {'data': 'Batch job is scheduled!', 'batch_job_id': save_data['batch_job_id']},
125
+
126
+
127
+ except Exception as e:
128
+ return {'error': str(e)}
129
+