Update services/whisper_service.py
Browse files- services/whisper_service.py +8 -41
services/whisper_service.py
CHANGED
@@ -1,46 +1,13 @@
|
|
1 |
import whisper
|
2 |
-
import tempfile
|
3 |
-
import os
|
4 |
import torch
|
5 |
-
from config import settings
|
6 |
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
if settings.TORCH_DEVICE == "cuda" and not torch.cuda.is_available():
|
11 |
-
print("WARNING: CUDA requested but not available. Falling back to CPU.")
|
12 |
-
self.device = "cpu"
|
13 |
-
else:
|
14 |
-
self.device = settings.TORCH_DEVICE
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
async def transcribe(self, audio_file: bytes, output_language: str = None) -> dict:
|
21 |
-
try:
|
22 |
-
# Create a temporary file to store the uploaded audio
|
23 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
|
24 |
-
temp_audio.write(audio_file)
|
25 |
-
temp_audio_path = temp_audio.name
|
26 |
-
|
27 |
-
try:
|
28 |
-
# Transcribe the audio
|
29 |
-
transcription_options = {"fp16": not settings.FORCE_FP32 and self.device == "cuda"}
|
30 |
-
if output_language:
|
31 |
-
transcription_options["language"] = output_language
|
32 |
-
|
33 |
-
result = self.model.transcribe(temp_audio_path, **transcription_options)
|
34 |
-
|
35 |
-
return {
|
36 |
-
"text": result["text"],
|
37 |
-
"language": result.get("language"),
|
38 |
-
"segments": result.get("segments")
|
39 |
-
}
|
40 |
-
finally:
|
41 |
-
# Clean up the temporary file
|
42 |
-
if os.path.exists(temp_audio_path):
|
43 |
-
os.remove(temp_audio_path)
|
44 |
-
|
45 |
-
except Exception as e:
|
46 |
-
raise Exception(f"Transcription failed: {str(e)}")
|
|
|
1 |
import whisper
|
|
|
|
|
2 |
import torch
|
|
|
3 |
|
4 |
+
# Checking if NVIDIA GPU is available
|
5 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
|
7 |
+
# Load the Whisper model
|
8 |
+
model = whisper.load_model("base", device=DEVICE)
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def transcribe_audio(file_path: str) -> str:
|
11 |
+
"""Transcribes the given audio file and returns the text."""
|
12 |
+
result = model.transcribe(file_path)
|
13 |
+
return result['text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|