Spaces:
Runtime error
Runtime error
File size: 11,023 Bytes
0e023c7 bd35e3e 0e023c7 bd35e3e 0e023c7 bd35e3e 0e023c7 acd4f5a 0e023c7 bd35e3e 0e023c7 7326b2e 0e023c7 4cee86a 0e023c7 8ea647d acd4f5a 0e023c7 acd4f5a 0e023c7 8ea647d 0e023c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import shutil
import subprocess
import torch
import gradio as gr
from fastapi import FastAPI
import os
from PIL import Image
import tempfile
from decord import VideoReader, cpu
from transformers import TextStreamer
from llava.constants import DEFAULT_X_TOKEN, X_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle, Conversation
from llava.serve.gradio_utils import Chat, tos_markdown, learn_more_markdown, title_markdown, block_css
def save_image_to_local(image):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
image = Image.open(image)
image.save(filename)
# print(filename)
return filename
def save_video_to_local(video_path):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
shutil.copyfile(video_path, filename)
return filename
def generate(image1, video, textbox_in, first_run, state, state_, images_tensor):
flag = 1
if not textbox_in:
if len(state_.messages) > 0:
textbox_in = state_.messages[-1][1]
state_.messages.pop(-1)
flag = 0
else:
return "Please enter instruction"
image1 = image1 if image1 else "none"
video = video if video else "none"
# assert not (os.path.exists(image1) and os.path.exists(video))
if type(state) is not Conversation:
state = conv_templates[conv_mode].copy()
state_ = conv_templates[conv_mode].copy()
images_tensor = [[], []]
first_run = False if len(state.messages) > 0 else True
text_en_in = textbox_in.replace("picture", "image")
# images_tensor = [[], []]
image_processor = handler.image_processor
if os.path.exists(image1) and not os.path.exists(video):
tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
# print(tensor.shape)
tensor = tensor.to(handler.model.device, dtype=dtype)
images_tensor[0] = images_tensor[0] + [tensor]
images_tensor[1] = images_tensor[1] + ['image']
print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())
video_processor = handler.video_processor
if not os.path.exists(image1) and os.path.exists(video):
tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
# print(tensor.shape)
tensor = tensor.to(handler.model.device, dtype=dtype)
images_tensor[0] = images_tensor[0] + [tensor]
images_tensor[1] = images_tensor[1] + ['video']
print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())
if os.path.exists(image1) and os.path.exists(video):
tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
# print(tensor.shape)
tensor = tensor.to(handler.model.device, dtype=dtype)
images_tensor[0] = images_tensor[0] + [tensor]
images_tensor[1] = images_tensor[1] + ['video']
tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
# print(tensor.shape)
tensor = tensor.to(handler.model.device, dtype=dtype)
images_tensor[0] = images_tensor[0] + [tensor]
images_tensor[1] = images_tensor[1] + ['image']
print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())
if os.path.exists(image1) and not os.path.exists(video):
text_en_in = DEFAULT_X_TOKEN['IMAGE'] + '\n' + text_en_in
if not os.path.exists(image1) and os.path.exists(video):
text_en_in = DEFAULT_X_TOKEN['VIDEO'] + '\n' + text_en_in
if os.path.exists(image1) and os.path.exists(video):
text_en_in = DEFAULT_X_TOKEN['VIDEO'] + '\n' + text_en_in + '\n' + DEFAULT_X_TOKEN['IMAGE']
text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
state_.messages[-1] = (state_.roles[1], text_en_out)
text_en_out = text_en_out.split('#')[0]
textbox_out = text_en_out
show_images = ""
if os.path.exists(image1):
filename = save_image_to_local(image1)
show_images += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">'
if os.path.exists(video):
filename = save_video_to_local(video)
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={filename}"></video>'
if flag:
state.append_message(state.roles[0], textbox_in + "\n" + show_images)
state.append_message(state.roles[1], textbox_out)
torch.cuda.empty_cache()
return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True))
def regenerate(state, state_):
state.messages.pop(-1)
state_.messages.pop(-1)
if len(state.messages) > 0:
return state, state_, state.to_gradio_chatbot(), False
return (state, state_, state.to_gradio_chatbot(), True)
def clear_history(state, state_):
state = conv_templates[conv_mode].copy()
state_ = conv_templates[conv_mode].copy()
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),\
gr.update(value=None, interactive=True),\
True, state, state_, state.to_gradio_chatbot(), [[], []])
conv_mode = "llava_v1"
model_path = 'LanguageBind/Video-LLaVA-7B'
device = 'cuda'
load_8bit = False
load_4bit = True
dtype = torch.float16
handler = Chat(model_path, conv_mode=conv_mode, load_8bit=load_8bit, load_4bit=load_8bit, device=device)
# handler.model.to(dtype=dtype)
if not os.path.exists("temp"):
os.makedirs("temp")
print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())
app = FastAPI()
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title='Video-LLaVAπ', theme=gr.themes.Default(), css=block_css) as demo:
gr.Markdown(title_markdown)
state = gr.State()
state_ = gr.State()
first_run = gr.State()
images_tensor = gr.State()
with gr.Row():
with gr.Column(scale=3):
image1 = gr.Image(label="Input Image", type="filepath")
video = gr.Video(label="Input Video")
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[
f"{cur_dir}/examples/extreme_ironing.jpg",
"What is unusual about this image?",
],
[
f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?",
],
[
f"{cur_dir}/examples/desert.jpg",
"If there are factual errors in the questions, point it out; if not, proceed answering the question. Whatβs happening in the desert?",
],
],
inputs=[image1, textbox],
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Video-LLaVA", bubble_full_width=True).style(height=750)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(
value="Send", variant="primary", interactive=True
)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True)
downvote_btn = gr.Button(value="π Downvote", interactive=True)
flag_btn = gr.Button(value="β οΈ Flag", interactive=True)
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=True)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True)
with gr.Row():
gr.Examples(
examples=[
[
f"{cur_dir}/examples/sample_img_8.png",
f"{cur_dir}/examples/sample_demo_8.mp4",
"Are the image and the video depicting the same place?",
],
[
f"{cur_dir}/examples/sample_img_22.png",
f"{cur_dir}/examples/sample_demo_22.mp4",
"Are the instruments in the pictures used in the video?",
],
[
f"{cur_dir}/examples/sample_img_13.png",
f"{cur_dir}/examples/sample_demo_13.mp4",
"Does the flag in the image appear in the video?",
],
],
inputs=[image1, video, textbox],
)
gr.Examples(
examples=[
[
f"{cur_dir}/examples/sample_demo_1.mp4",
"Why is this video funny?",
],
'''[
f"{cur_dir}/examples/sample_demo_7.mp4",
"Create a short fairy tale with a moral lesson inspired by the video.",
],
[
f"{cur_dir}/examples/sample_demo_8.mp4",
"Where is this video taken from? What place/landmark is shown in the video?",
],
[
f"{cur_dir}/examples/sample_demo_12.mp4",
"What does the woman use to split the logs and how does she do it?",
],
[
f"{cur_dir}/examples/sample_demo_18.mp4",
"Describe the video in detail.",
],
[
f"{cur_dir}/examples/sample_demo_22.mp4",
"Describe the activity in the video.",
],'''
],
inputs=[video, textbox],
)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
submit_btn.click(generate, [image1, video, textbox, first_run, state, state_, images_tensor],
[state, state_, chatbot, first_run, textbox, images_tensor, image1, video])
regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then(
generate, [image1, video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, image1, video])
clear_btn.click(clear_history, [state, state_],
[image1, video, textbox, first_run, state, state_, chatbot, images_tensor])
# app = gr.mount_gradio_app(app, demo, path="/")
demo.launch()
# uvicorn llava.serve.gradio_web_server:app
|