File size: 9,820 Bytes
61f3f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from typing import Optional

import torch
import torch.nn as nn
import re

from transformers import PretrainedConfig, Blip2PreTrainedModel, Blip2Config, Blip2QFormerModel


class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": 'identity'}


class SimpleResBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.pre_norm = nn.LayerNorm(channels)

        self.proj = nn.Sequential(
            nn.Linear(channels, channels),
            nn.GELU(),
            nn.Linear(channels, channels)
        )
    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)


# def build_vision_projector(config, delay_load=False, **kwargs):
#     projector_type = getattr(config, 'mm_projector_type', 'linear')
#
#     if projector_type == 'linear':
#         return nn.Linear(config.mm_hidden_size, config.hidden_size)
#
#     mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
#     if mlp_gelu_match:
#         mlp_depth = int(mlp_gelu_match.group(1))
#         modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
#         for _ in range(1, mlp_depth):
#             modules.append(nn.GELU())
#             modules.append(nn.Linear(config.hidden_size, config.hidden_size))
#         return nn.Sequential(*modules)
#
#     if projector_type == 'identity':
#         return IdentityMap()
#
#     raise ValueError(f'Unknown projector type: {projector_type}')


class Blip2Model(Blip2PreTrainedModel):
    def __init__(self, config: Blip2Config):
        super().__init__(config)

        self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
        self.qformer = Blip2QFormerModel(config.qformer_config)

        # self.proj = nn.Linear(config.mm_hidden_size, config.hidden_size)
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size)]
        self.proj = nn.Sequential(*modules)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        Returns:
            vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`):
                The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that
                contains the image features, the pooled image features and the hidden states if
                `output_hidden_states=True`.
        Examples:
        ```python
        >>> import torch
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import Blip2Processor, Blip2Model

        >>> device = "cuda" if torch.cuda.is_available() else "cpu"

        >>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
        >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
        >>> model.to(device)  # doctest: +IGNORE_RESULT

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
        >>> qformer_outputs = model.get_qformer_features(**inputs)
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # vision_outputs = self.vision_model(
        #     pixel_values=pixel_values,
        #     output_attentions=output_attentions,
        #     output_hidden_states=output_hidden_states,
        #     return_dict=return_dict,
        # )
        #
        # image_embeds = vision_outputs[0]
        # image_embeds = self.proj(pixel_values)
        image_embeds = pixel_values


        # print('pixel_values to proj', pixel_values.shape, image_embeds.shape)
        # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
        image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_outputs = self.qformer(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        ).last_hidden_state
        # print('qformer out', query_outputs.shape)
        query_outputs = self.proj(query_outputs)
        return query_outputs


def qformer_config_template(config, projector_type):
    pattern = r"qformer(\d+)_(\d+)"

    match = re.search(pattern, projector_type)
    num_hidden_layers = int(match.group(1))
    num_query_tokens = int(match.group(2))

    qformer_config = type('Blip2Config', (PretrainedConfig,), {
        "initializer_factor": 1.0,
        "initializer_range": 0.02,
        "model_type": "blip-2",
        "num_query_tokens": num_query_tokens,
        "hidden_size": config.hidden_size,
        "mm_hidden_size": config.mm_hidden_size,
        "qformer_config": type('qformer_config', (PretrainedConfig,), {
            "_name_or_path": "",
            "add_cross_attention": False,
            "architectures": None,
            "attention_probs_dropout_prob": 0.0,
            "bad_words_ids": None,
            "begin_suppress_tokens": None,
            "bos_token_id": None,
            "chunk_size_feed_forward": 0,
            "classifier_dropout": None,
            "cross_attention_frequency": 1,
            "cross_attention_hidden_size": None,
            "decoder_start_token_id": None,
            "diversity_penalty": 0.0,
            "do_sample": False,
            "early_stopping": False,
            "encoder_hidden_size": config.mm_hidden_size,
            "encoder_no_repeat_ngram_size": 0,
            "eos_token_id": None,
            "exponential_decay_length_penalty": None,
            "finetuning_task": None,
            "forced_bos_token_id": None,
            "forced_eos_token_id": None,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.0,
            "hidden_size": config.mm_hidden_size,
            "id2label": {
                "0": "LABEL_0",
                "1": "LABEL_1"
            },
            "initializer_range": 0.02,
            "intermediate_size": config.mm_hidden_size * 4,
            "is_decoder": False,
            "is_encoder_decoder": False,
            "label2id": {
                "LABEL_0": 0,
                "LABEL_1": 1
            },
            "layer_norm_eps": 1e-12,
            "length_penalty": 1.0,
            "max_length": 20,
            "max_position_embeddings": 512,
            "min_length": 0,
            "model_type": "blip_2_qformer",
            "no_repeat_ngram_size": 0,
            "num_attention_heads": 32,
            "num_beam_groups": 1,
            "num_beams": 1,
            "num_hidden_layers": num_hidden_layers,
            "num_return_sequences": 1,
            "output_attentions": False,
            "output_hidden_states": False,
            "output_scores": False,
            "pad_token_id": 0,
            "position_embedding_type": "absolute",
            "prefix": None,
            "problem_type": None,
            "pruned_heads": {},
            "remove_invalid_values": False,
            "repetition_penalty": 1.0,
            "return_dict": True,
            "return_dict_in_generate": False,
            "sep_token_id": None,
            "suppress_tokens": None,
            "task_specific_params": None,
            "temperature": 1.0,
            "tf_legacy_loss": False,
            "tie_encoder_decoder": False,
            "tie_word_embeddings": True,
            "tokenizer_class": None,
            "top_k": 50,
            "top_p": 1.0,
            "torch_dtype": None,
            "torchscript": False,
            "transformers_version": "4.27.0.dev0",
            "typical_p": 1.0,
            "use_bfloat16": False,
            "vocab_size": 30522
        })()
    })()
    return qformer_config

def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')

    if projector_type == 'linear':
        return nn.Linear(config.mm_hidden_size, config.hidden_size)

    elif projector_type == 'identity':
        return IdentityMap()

    elif projector_type.startswith('qformer'):  # qformer2_64
        qformer_config = qformer_config_template(config, projector_type)
        return Blip2Model(qformer_config)
    else:
        mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
        if mlp_gelu_match:
            mlp_depth = int(mlp_gelu_match.group(1))
            modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
            for _ in range(1, mlp_depth):
                modules.append(nn.GELU())
                modules.append(nn.Linear(config.hidden_size, config.hidden_size))
            return nn.Sequential(*modules)

    raise ValueError(f'Unknown projector type: {projector_type}')