AI-or-Not-dev / app.py
Omnibus's picture
Update app.py
cba6bca
raw
history blame
2.63 kB
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
from numpy import exp
import pandas as pd
def softmax(vector):
e = exp(vector)
return e / e.sum()
models=[
"Nahrawy/AIorNot",
"arnolfokam/ai-generated-image-detector",
"umm-maybe/AI-image-detector",
]
def aiornot0(image):
labels = ["Real", "AI"]
mod=models[0]
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
model0 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor0(image, return_tensors="pt")
with torch.no_grad():
outputs = model0(**input)
print (outputs)
logits = outputs.logits
print (logits)
probability = softmax(logits)
print(f'PROBABILITY ::: {probability}')
print(probability[0][0])
px = pd.DataFrame(probability.numpy())
print(px)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return gr.BarPlot.update(label=f'{models[0]}', vertical=False,value=px)
def aiornot1(image):
labels = ["Real", "AI"]
mod=models[1]
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
model1 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor1(image, return_tensors="pt")
with torch.no_grad():
outputs = model1(**input)
print (outputs)
logits = outputs.logits
print (logits)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return label
def aiornot2(image):
labels = ["Real", "AI"]
mod=models[2]
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
model2 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor2(image, return_tensors="pt")
with torch.no_grad():
outputs = model2(**input)
print (outputs)
logits = outputs.logits
print (logits)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return label
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
inp = gr.Image()
mod_choose=gr.Number(value=0)
btn = gr.Button()
with gr.Column():
#outp0 = gr.Textbox(label=f'{models[0]}')
outp0 = gr.BarPlot(label=f'{models[0]}', vertical=False)
outp1 = gr.Textbox(label=f'{models[1]}')
outp2 = gr.Textbox(label=f'{models[2]}')
btn.click(aiornot0,[inp],outp0)
btn.click(aiornot1,[inp],outp1)
btn.click(aiornot2,[inp],outp2)
app.launch()