File size: 2,949 Bytes
09e3a4b
 
 
3e478f7
03bb47d
 
18b083a
03bb47d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69afa65
03bb47d
18b083a
 
 
 
 
 
 
 
d1b3dae
 
 
 
 
 
1b3417a
 
 
d1b3dae
69afa65
7cccb39
69afa65
1b3417a
03bb47d
09e3a4b
03bb47d
09e3a4b
 
 
 
 
 
 
 
f1ba07f
03bb47d
 
 
 
6bfe0e3
03bb47d
1b3417a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from gradio_client import Client
from huggingface_hub import InferenceClient

import gradio as gr
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")


def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt


def chat_inf(system_prompt,prompt,history):
    if not history:
        history = []
    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield [history,(prompt,output)]


        
def get_screenshot(chat: list,height=5000,width=600,chatblock=[1],header=True,theme="light",wait=3000):
    result = ss_client.predict(chat,height,width,chatblock,header,theme,wait,api_name="/run_script")
		# str  in 'Chat: [('user','bot'),('user','bot')]' Textbox component
		# float  in 'Height' Number component
		# float  in 'Width' Number component
		# List[Literal['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20']]  in 'Chatblocks' Checkboxgroup component
		# bool  in 'Show Header' Checkbox component
		# Literal['light', 'dark']  in 'Theme' Radio component
		# float (numeric value between 1 and 10000) in 'Wait time' Slider component
		# api_name="/run_script"

        ## return types:
        # filepath representing output in 'value_25' Image component,
        # str representing output in 'value_20' Html component,
        # List[Dict(image: filepath, caption: str | None)] representing output in 'value_24' Gallery component,
        # filepath representing output in 'value_23' Image component,
    out = f'https://omnibus-html-image-current-tab.hf.space/file={result[0]}'
    print(out)
    return out

chat=[('user','bot'),('user','bot')]

#get_screenshot(chat=[('user','bot'),('user','bot')])
with gr.Blocks() as app:
    with gr.Row():
        with gr.Column(scale=3):
            chat_b = gr.Chatbot()
            with gr.Row():
                with gr.Column(scale=3):
                    inp = gr.Textbox(label="Prompt")
                with gr.Column(scale=1):
                    btn = gr.Button("Chat")
                    with gr.Group():
                        stop_btn=gr.Button("Stop")
                        clear_btn=gr.Button("Clear")
        with gr.Column(scale=1):
            with gr.Group():    
                sys_inp = gr.Textbox(label="System Prompt")
                im_btn=gr.Button("Screenshot")
                img=gr.Image(type='filepath')
    btn.click(chat_inf,[sys_inp,inp,chatbot],chat_b)
    #app.load(get_screenshot,inp,img)
app.launch()