Spaces:
Sleeping
Sleeping
File size: 5,948 Bytes
e1f356a 86332dd e1f356a 86332dd e1f356a 47f0019 e1f356a 3e1467e e1f356a 9d003fe e1f356a 3e1467e e1f356a 3e1467e e1f356a 37e985c e1f356a 47f0019 e1f356a 3e1467e e1f356a 86332dd e1f356a c3d04a2 e1f356a 95743b0 e1f356a 86332dd e1f356a 3e1467e e1f356a 3e1467e 1160d7d 3028dd7 13dc8ee 103cb4e 13dc8ee eb50a54 3e1467e e1f356a 1a08443 e1f356a 8a5a1ff 3e1467e 8a5a1ff 1160d7d e1f356a 33db0f5 1160d7d e1f356a 05d25f5 e1f356a 4108552 e1f356a 13dc8ee eb7426e 4108552 e1f356a 05d25f5 e1f356a 05d25f5 e1f356a 05d25f5 da0e32f 05d25f5 da0e32f e1f356a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
#import urllib.request
#import requests
#import bs4
#import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
api=HfApi()
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def parse_action(string: str):
print("PARSING:")
print(string)
assert string.startswith("action:")
idx = string.find("action_input=")
print(idx)
if idx == -1:
print ("idx == -1")
print (string[8:])
return string[8:], None
print ("last return:")
print (string[8 : idx - 1])
print (string[idx + 13 :].strip("'").strip('"'))
return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"')
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
purpose,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose=purpose
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=4096,
seed=seed,
purpose=instruct,
knowledge=new_history,
history=hist,
)
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
purpose="Compile report",
knowledge=new_history,
history="All data has been recieved.",
)
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def summarize(inp,history,data=None,file=None):
#file = None
history = [(inp,"Working on it...")] if not history else history
yield "",history
if file !=None:
try:
with open(file,"r") as f:
zz=f.readlines()
f.close
print (zz)
except Exception as e:
print (e)
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c=0
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
rawp = compress_data(c,inp,out)
#print (rawp)
#print (f'out:: {out}')
#history += "observation: the search results are:\n {}\n".format(out)
#task = "complete?"
history.append(("",rawp))
yield "", history
#################################
'''
examples =[
"what are todays breaking news stories?",
"find the most popular model that I can use to generate an image by providing a text prompt",
"return the top 10 models that I can use to identify objects in images",
"which models have the most likes from each category?",
]
additional_inputs=[
gr.File(),
]
with gr.Blocks() as app:
with gr.Row():
gr.ChatInterface(
fn=summarize,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="<center>Mixtral 8x7B TLDR</center>",
description="<center>Summarize Lengthy data with<br>Mixtral 8x7B",
examples=examples,
concurrency_limit=20,
)
gr.File()
'''
with gr.Blocks() as app:
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox("Instructions")
with gr.Column(scale=1):
button=gr.Button()
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
data=gr.Textbox(label="Input Data", lines=6)
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
go=button.click(summarize,[prompt,chatbot,data],[prompt,chatbot])
stop_button.click(None,None,None,cancels=[go])
app.launch(server_port=7860,show_api=False)
|