File size: 5,948 Bytes
e1f356a
86332dd
 
 
 
e1f356a
 
 
 
 
 
 
86332dd
 
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47f0019
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e1467e
e1f356a
 
 
9d003fe
 
e1f356a
 
 
 
 
 
 
 
 
 
 
3e1467e
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e1467e
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e985c
e1f356a
 
 
 
 
 
 
 
47f0019
e1f356a
3e1467e
e1f356a
 
 
 
 
 
 
 
86332dd
e1f356a
 
 
c3d04a2
e1f356a
95743b0
e1f356a
 
86332dd
e1f356a
3e1467e
 
e1f356a
 
 
3e1467e
 
1160d7d
3028dd7
 
13dc8ee
 
 
 
 
 
 
103cb4e
13dc8ee
eb50a54
3e1467e
e1f356a
 
1a08443
e1f356a
 
 
 
8a5a1ff
3e1467e
8a5a1ff
1160d7d
 
e1f356a
33db0f5
 
1160d7d
e1f356a
 
05d25f5
e1f356a
 
 
 
4108552
e1f356a
13dc8ee
 
 
eb7426e
4108552
 
 
 
 
 
 
 
 
 
e1f356a
 
05d25f5
e1f356a
05d25f5
 
 
 
 
 
e1f356a
 
05d25f5
da0e32f
 
05d25f5
 
da0e32f
e1f356a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
#import urllib.request
#import requests
#import bs4
#import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from agent import (
    PREFIX,
    COMPRESS_DATA_PROMPT,
    COMPRESS_DATA_PROMPT_SMALL,
    LOG_PROMPT,
    LOG_RESPONSE,
)
api=HfApi()



client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

def parse_action(string: str):
    print("PARSING:")
    print(string)
    assert string.startswith("action:")
    idx = string.find("action_input=")
    print(idx)
    if idx == -1:
        print ("idx == -1")
        print (string[8:])
        return string[8:], None

    print ("last return:")
    print (string[8 : idx - 1])
    print (string[idx + 13 :].strip("'").strip('"'))
    return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"')



VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt


def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    purpose,
    **prompt_kwargs,
):
    print(seed)
    timestamp=datetime.datetime.now()
    
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=max_tokens,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    
    content = PREFIX.format(
        timestamp=timestamp,
        purpose=purpose
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
        #yield resp

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp

def compress_data(c, instruct, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT_SMALL,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=4096,
            seed=seed,
            purpose=instruct,
            knowledge=new_history,
            history=hist,
        )
        new_history = resp
        print (resp)
        out+=resp
        e=e+chunk
        s=s+chunk
    
    resp = run_gpt(
        COMPRESS_DATA_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=8192,
        seed=seed,
        purpose="Compile report",
        knowledge=new_history,
        history="All data has been recieved.",
    )
    print ("final" + resp)
    #history = "observation: {}\n".format(resp)
    return resp



def summarize(inp,history,data=None,file=None):
    #file = None
    history = [(inp,"Working on it...")] if not history else history
    
    yield "",history
    if file !=None:
        try: 
            with open(file,"r") as f:
                zz=f.readlines()
                f.close
            print (zz)
        except Exception as e:
            print (e) 
        
    print(inp)
    out = str(data)
    rl = len(out)
    print(f'rl:: {rl}')
    c=0
    for i in str(out):
        if i == " " or i=="," or i=="\n":
            c +=1
    print (f'c:: {c}')
    
    rawp = compress_data(c,inp,out)    
    
    #print (rawp)
    #print (f'out:: {out}')
    #history += "observation: the search results are:\n {}\n".format(out)
    #task = "complete?"
    history.append(("",rawp))
    yield "", history       
#################################

'''
examples =[
    "what are todays breaking news stories?",
    "find the most popular model that I can use to generate an image by providing a text prompt",
    "return the top 10 models that I can use to identify objects in images",
    "which models have the most likes from each category?",
]
additional_inputs=[
    gr.File(),
]
with gr.Blocks() as app:
    with gr.Row():
        gr.ChatInterface(
            fn=summarize,
            chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
            title="<center>Mixtral 8x7B TLDR</center>",
            description="<center>Summarize Lengthy data with<br>Mixtral 8x7B",
            examples=examples,
            concurrency_limit=20,
        )
        gr.File()
'''
with gr.Blocks() as app:
    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=3):
            prompt=gr.Textbox("Instructions")
        with gr.Column(scale=1):
            button=gr.Button()
        
        #models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
    with gr.Row():
        stop_button=gr.Button("Stop")
        clear_btn = gr.Button("Clear")
    with gr.Row():
        data=gr.Textbox(label="Input Data", lines=6)
    #text=gr.JSON()
    #inp_query.change(search_models,inp_query,models_dd)
    go=button.click(summarize,[prompt,chatbot,data],[prompt,chatbot])
    stop_button.click(None,None,None,cancels=[go])
app.launch(server_port=7860,show_api=False)