File size: 9,193 Bytes
5238467 6ec60d5 5238467 6ec60d5 c9179f8 6ec60d5 5238467 6ec60d5 5238467 6ec60d5 5c415d9 6ec60d5 5238467 6ec60d5 5238467 6ec60d5 5238467 6ec60d5 5238467 6ec60d5 5238467 6ec60d5 5238467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from itertools import product
import pytest
import torch
from audiocraft.modules.transformer import (
StreamingMultiheadAttention, StreamingTransformer, set_efficient_attention_backend)
def test_transformer_causal_streaming():
torch.manual_seed(1234)
for context, custom in product([None, 10], [False, True]):
# Test that causality and receptive fields are properly handled.
# looking at the gradients
tr = StreamingTransformer(
16, 4, 1 if context else 2,
causal=True, past_context=context, custom=custom,
dropout=0.)
steps = 20
for k in [0, 10, 15, 19]:
x = torch.randn(4, steps, 16, requires_grad=True)
y = tr(x)
y[:, k].abs().sum().backward()
if k + 1 < steps:
assert torch.allclose(x.grad[:, k + 1:], torch.tensor(0.)), x.grad[:, k + 1:].norm()
assert not torch.allclose(x.grad[:, :k + 1], torch.tensor(0.)), x.grad[:, :k + 1].norm()
if context is not None and k > context:
limit = k - context - 1
assert torch.allclose(x.grad[:, :limit],
torch.tensor(0.)), x.grad[:, :limit].norm()
# Now check that streaming gives the same result at batch eval.
x = torch.randn(4, steps, 16)
y = tr(x)
ys = []
with tr.streaming():
for k in range(steps):
chunk = x[:, k:k + 1, :]
ys.append(tr(chunk))
y_stream = torch.cat(ys, dim=1)
delta = torch.norm(y_stream - y) / torch.norm(y)
assert delta < 1e-6, delta
def test_transformer_vs_pytorch():
torch.manual_seed(1234)
# Check that in the non causal setting, we get the same result as
# PyTorch Transformer encoder.
for custom in [False, True]:
tr = StreamingTransformer(
16, 4, 2,
causal=False, custom=custom, dropout=0., positional_scale=0.)
layer = torch.nn.TransformerEncoderLayer(16, 4, dropout=0., batch_first=True)
tr_ref = torch.nn.TransformerEncoder(layer, 2)
tr.load_state_dict(tr_ref.state_dict())
x = torch.randn(4, 20, 16)
y = tr(x)
y2 = tr_ref(x)
delta = torch.norm(y2 - y) / torch.norm(y)
assert delta < 1e-6, delta
def test_streaming_api():
tr = StreamingTransformer(16, 4, 2, causal=True, dropout=0.)
tr.eval()
steps = 12
x = torch.randn(1, steps, 16)
with torch.no_grad():
with tr.streaming():
_ = tr(x[:, :1])
state = {k: v.clone() for k, v in tr.get_streaming_state().items()}
y = tr(x[:, 1:2])
tr.set_streaming_state(state)
y2 = tr(x[:, 1:2])
assert torch.allclose(y, y2), (y - y2).norm()
assert tr.flush() is None
def test_memory_efficient():
for backend in ['torch', 'xformers']:
torch.manual_seed(1234)
set_efficient_attention_backend(backend)
tr = StreamingTransformer(
16, 4, 2, custom=True, dropout=0., layer_scale=0.1)
tr_mem_efficient = StreamingTransformer(
16, 4, 2, dropout=0., memory_efficient=True, layer_scale=0.1)
tr_mem_efficient.load_state_dict(tr.state_dict())
tr.eval()
steps = 12
x = torch.randn(3, steps, 16)
with torch.no_grad():
y = tr(x)
y2 = tr_mem_efficient(x)
assert torch.allclose(y, y2), ((y - y2).norm(), backend)
def test_attention_as_float32():
torch.manual_seed(1234)
cases = [
{'custom': True},
{'custom': False},
]
for case in cases:
tr = StreamingTransformer(16, 4, 2, dropout=0., dtype=torch.bfloat16, **case)
tr_float32 = StreamingTransformer(
16, 4, 2, dropout=0., attention_as_float32=True, dtype=torch.bfloat16, **case)
if not case['custom']:
# we are not using autocast here because it doesn't really
# work as expected on CPU, so we have to manually cast the weights of the MHA.
for layer in tr_float32.layers:
layer.self_attn.mha.to(torch.float32)
tr_float32.load_state_dict(tr.state_dict())
steps = 12
x = torch.randn(3, steps, 16, dtype=torch.bfloat16)
with torch.no_grad():
y = tr(x)
y2 = tr_float32(x)
assert not torch.allclose(y, y2), (y - y2).norm()
@torch.no_grad()
def test_streaming_memory_efficient():
for backend in ['torch', 'xformers']:
torch.manual_seed(1234)
set_efficient_attention_backend(backend)
tr = StreamingTransformer(16, 4, 2, causal=True, dropout=0., custom=True)
tr_mem_efficient = StreamingTransformer(
16, 4, 2, dropout=0., memory_efficient=True, causal=True)
tr.load_state_dict(tr_mem_efficient.state_dict())
tr.eval()
tr_mem_efficient.eval()
steps = 12
x = torch.randn(3, steps, 16)
ref = tr(x)
with tr_mem_efficient.streaming():
outs = []
# frame_sizes = [2] + [1] * (steps - 2)
frame_sizes = [1] * steps
for frame_size in frame_sizes:
frame = x[:, :frame_size]
x = x[:, frame_size:]
outs.append(tr_mem_efficient(frame))
out = torch.cat(outs, dim=1)
delta = torch.norm(out - ref) / torch.norm(out)
assert delta < 1e-6, delta
def test_cross_attention():
torch.manual_seed(1234)
for norm_first in [True, False]:
m = StreamingTransformer(
16, 4, 2, cross_attention=False, norm_first=norm_first, dropout=0., custom=True)
m_cross = StreamingTransformer(
16, 4, 2, cross_attention=True, norm_first=norm_first, dropout=0., custom=True)
m_cross.load_state_dict(m.state_dict(), strict=False)
x = torch.randn(2, 5, 16)
cross_x = torch.randn(2, 3, 16)
y_ref = m(x)
y_cross_zero = m_cross(x, cross_attention_src=0 * cross_x)
# With norm_first, the two should be exactly yhe same,
# but with norm_first=False, we get 2 normalization in a row
# and the epsilon value leads to a tiny change.
atol = 0. if norm_first else 1e-6
print((y_ref - y_cross_zero).norm() / y_ref.norm())
assert torch.allclose(y_ref, y_cross_zero, atol=atol)
# We now expect a difference even with a generous atol of 1e-2.
y_cross = m_cross(x, cross_attention_src=cross_x)
assert not torch.allclose(y_cross, y_cross_zero, atol=1e-2)
with pytest.raises(AssertionError):
_ = m_cross(x)
_ = m(x, cross_attention_src=cross_x)
def test_cross_attention_compat():
torch.manual_seed(1234)
num_heads = 2
dim = num_heads * 64
with pytest.raises(AssertionError):
StreamingMultiheadAttention(dim, num_heads, causal=True, cross_attention=True)
cross_attn = StreamingMultiheadAttention(
dim, num_heads, dropout=0, cross_attention=True, custom=True)
ref_attn = torch.nn.MultiheadAttention(dim, num_heads, dropout=0, batch_first=True)
# We can load the regular attention state dict
# so we have compat when loading old checkpoints.
cross_attn.load_state_dict(ref_attn.state_dict())
queries = torch.randn(3, 7, dim)
keys = torch.randn(3, 9, dim)
values = torch.randn(3, 9, dim)
y = cross_attn(queries, keys, values)[0]
y_ref = ref_attn(queries, keys, values)[0]
assert torch.allclose(y, y_ref, atol=1e-7), (y - y_ref).norm() / y_ref.norm()
# Now let's check that streaming is working properly.
with cross_attn.streaming():
ys = []
for step in range(queries.shape[1]):
ys.append(cross_attn(queries[:, step: step + 1], keys, values)[0])
y_streaming = torch.cat(ys, dim=1)
assert torch.allclose(y_streaming, y, atol=1e-7)
def test_repeat_kv():
torch.manual_seed(1234)
num_heads = 8
kv_repeat = 4
dim = num_heads * 64
with pytest.raises(AssertionError):
mha = StreamingMultiheadAttention(
dim, num_heads, causal=True, kv_repeat=kv_repeat, cross_attention=True)
mha = StreamingMultiheadAttention(
dim, num_heads, causal=True, kv_repeat=kv_repeat)
mha = StreamingMultiheadAttention(
dim, num_heads, causal=True, kv_repeat=kv_repeat, custom=True)
x = torch.randn(4, 18, dim)
y = mha(x, x, x)[0]
assert x.shape == y.shape
def test_qk_layer_norm():
torch.manual_seed(1234)
tr = StreamingTransformer(
16, 4, 2, custom=True, dropout=0., qk_layer_norm=True, bias_attn=False)
steps = 12
x = torch.randn(3, steps, 16)
y = tr(x)
tr = StreamingTransformer(
16, 4, 2, custom=True, dropout=0., qk_layer_norm=True, cross_attention=True)
z = torch.randn(3, 21, 16)
y = tr(x, cross_attention_src=z)
assert y.shape == x.shape
|