|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from functools import partial |
|
import logging |
|
import math |
|
import typing as tp |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ..utils import utils |
|
from ..modules.streaming import StreamingModule, State |
|
from ..modules.transformer import StreamingTransformer, create_norm_fn |
|
from ..modules.conditioners import ( |
|
ConditionFuser, |
|
ClassifierFreeGuidanceDropout, |
|
AttributeDropout, |
|
ConditioningProvider, |
|
ConditioningAttributes, |
|
ConditionType, |
|
) |
|
from ..modules.codebooks_patterns import CodebooksPatternProvider |
|
from ..modules.activations import get_activation_fn |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
ConditionTensors = tp.Dict[str, ConditionType] |
|
CFGConditions = tp.Union[ConditionTensors, tp.Tuple[ConditionTensors, ConditionTensors]] |
|
|
|
|
|
def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None): |
|
"""LM layer initialization. |
|
Inspired from xlformers: https://github.com/fairinternal/xlformers |
|
|
|
Args: |
|
method (str): Method name for init function. Valid options are: |
|
'gaussian', 'uniform'. |
|
input_dim (int): Input dimension of the initialized module. |
|
init_depth (Optional[int]): Optional init depth value used to rescale |
|
the standard deviation if defined. |
|
""" |
|
|
|
std = 1 / math.sqrt(input_dim) |
|
|
|
if init_depth is not None: |
|
std = std / math.sqrt(2 * init_depth) |
|
|
|
if method == 'gaussian': |
|
return partial( |
|
torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std |
|
) |
|
elif method == 'uniform': |
|
bound = math.sqrt(3) * std |
|
return partial(torch.nn.init.uniform_, a=-bound, b=bound) |
|
else: |
|
raise ValueError("Unsupported layer initialization method") |
|
|
|
|
|
def init_layer(m: nn.Module, |
|
method: str, |
|
init_depth: tp.Optional[int] = None, |
|
zero_bias_init: bool = False): |
|
"""Wrapper around ``get_init_fn`` for proper initialization of LM modules. |
|
|
|
Args: |
|
m (nn.Module): Module to initialize. |
|
method (str): Method name for the init function. |
|
init_depth (Optional[int]): Optional init depth value used to rescale |
|
the standard deviation if defined. |
|
zero_bias_init (bool): Whether to initialize the bias to 0 or not. |
|
""" |
|
if isinstance(m, nn.Linear): |
|
init_fn = get_init_fn(method, m.in_features, init_depth=init_depth) |
|
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16: |
|
weight = m.weight.float() |
|
init_fn(weight) |
|
m.weight.data[:] = weight.half() |
|
else: |
|
init_fn(m.weight) |
|
if zero_bias_init and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Embedding): |
|
init_fn = get_init_fn(method, m.embedding_dim, init_depth=None) |
|
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16: |
|
weight = m.weight.float() |
|
init_fn(weight) |
|
m.weight.data[:] = weight.half() |
|
else: |
|
init_fn(m.weight) |
|
|
|
|
|
class ScaledEmbedding(nn.Embedding): |
|
"""Boost learning rate for embeddings (with `scale`). |
|
""" |
|
def __init__(self, *args, lr=None, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.lr = lr |
|
|
|
def make_optim_group(self): |
|
group = {"params": list(self.parameters())} |
|
if self.lr is not None: |
|
group["lr"] = self.lr |
|
return group |
|
|
|
|
|
@dataclass |
|
class LMOutput: |
|
|
|
|
|
logits: torch.Tensor |
|
mask: torch.Tensor |
|
|
|
|
|
class LMModel(StreamingModule): |
|
"""Transformer-based language model on multiple streams of codes. |
|
|
|
Args: |
|
pattern_provider (CodebooksPatternProvider): Pattern provider for codebook interleaving. |
|
condition_provider (MusicConditioningProvider): Conditioning provider from metadata. |
|
fuser (ConditionFuser): Fuser handling the fusing of conditions with language model input. |
|
n_q (int): Number of parallel streams to model. |
|
card (int): Cardinality, vocabulary size. |
|
dim (int): Dimension of the transformer encoder. |
|
num_heads (int): Number of heads for the transformer encoder. |
|
hidden_scale (int): Scale for hidden feed forward dimension of the transformer encoder. |
|
norm (str): Normalization method. |
|
norm_first (bool): Use pre-norm instead of post-norm. |
|
emb_lr (Optional[float]): Embedding-specific learning rate. |
|
bias_proj (bool): Use bias for output projections. |
|
weight_init (Optional[str]): Method for weight initialization. |
|
depthwise_init (Optional[str]): Method for depthwise weight initialization. |
|
zero_bias_init (bool): If true and bias in Linears, initialize bias to zeros. |
|
cfg_dropout (float): Classifier-free guidance dropout. |
|
cfg_coef (float): Classifier-free guidance coefficient. |
|
attribute_dropout (dict): Attribute dropout probabilities. |
|
two_step_cfg (bool): Whether to run classifier free-guidance with 2 distinct steps. |
|
**kwargs: Additional parameters for the transformer encoder. |
|
""" |
|
def __init__(self, pattern_provider: CodebooksPatternProvider, condition_provider: ConditioningProvider, |
|
fuser: ConditionFuser, n_q: int = 8, card: int = 1024, dim: int = 128, num_heads: int = 8, |
|
hidden_scale: int = 4, norm: str = 'layer_norm', norm_first: bool = False, |
|
emb_lr: tp.Optional[float] = None, bias_proj: bool = True, |
|
weight_init: tp.Optional[str] = None, depthwise_init: tp.Optional[str] = None, |
|
zero_bias_init: bool = False, cfg_dropout: float = 0, cfg_coef: float = 1.0, |
|
attribute_dropout: tp.Dict[str, tp.Dict[str, float]] = {}, two_step_cfg: bool = False, |
|
**kwargs): |
|
super().__init__() |
|
self.cfg_coef = cfg_coef |
|
self.cfg_dropout = ClassifierFreeGuidanceDropout(p=cfg_dropout) |
|
self.att_dropout = AttributeDropout(p=attribute_dropout) |
|
self.condition_provider = condition_provider |
|
self.fuser = fuser |
|
self.card = card |
|
embed_dim = self.card + 1 |
|
self.n_q = n_q |
|
self.dim = dim |
|
self.pattern_provider = pattern_provider |
|
self.two_step_cfg = two_step_cfg |
|
self.emb = nn.ModuleList([ScaledEmbedding(embed_dim, dim, lr=emb_lr) for _ in range(n_q)]) |
|
if 'activation' in kwargs: |
|
kwargs['activation'] = get_activation_fn(kwargs['activation']) |
|
self.transformer = StreamingTransformer( |
|
d_model=dim, num_heads=num_heads, dim_feedforward=int(hidden_scale * dim), |
|
norm=norm, norm_first=norm_first, **kwargs) |
|
self.out_norm: tp.Optional[nn.Module] = None |
|
if norm_first: |
|
self.out_norm = create_norm_fn(norm, dim) |
|
self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=bias_proj) for _ in range(n_q)]) |
|
self._init_weights(weight_init, depthwise_init, zero_bias_init) |
|
self._fsdp: tp.Optional[nn.Module] |
|
self.__dict__['_fsdp'] = None |
|
|
|
def _init_weights(self, weight_init: tp.Optional[str], depthwise_init: tp.Optional[str], zero_bias_init: bool): |
|
"""Initialization of the transformer module weights. |
|
|
|
Args: |
|
weight_init (Optional[str]): Weight initialization strategy. See ``get_init_fn`` for valid options. |
|
depthwise_init (Optional[str]): Depwthwise initialization strategy. The following options are valid: |
|
'current' where the depth corresponds to the current layer index or 'global' where the total number |
|
of layer is used as depth. If not set, no depthwise initialization strategy is used. |
|
zero_bias_init (bool): Whether to initalize bias to zero or not. |
|
""" |
|
assert depthwise_init is None or depthwise_init in ['current', 'global'] |
|
assert depthwise_init is None or weight_init is not None, \ |
|
"If 'depthwise_init' is defined, a 'weight_init' method should be provided." |
|
assert not zero_bias_init or weight_init is not None, \ |
|
"If 'zero_bias_init', a 'weight_init' method should be provided" |
|
|
|
if weight_init is None: |
|
return |
|
|
|
for emb_layer in self.emb: |
|
init_layer(emb_layer, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init) |
|
|
|
for layer_idx, tr_layer in enumerate(self.transformer.layers): |
|
depth = None |
|
if depthwise_init == 'current': |
|
depth = layer_idx + 1 |
|
elif depthwise_init == 'global': |
|
depth = len(self.transformer.layers) |
|
init_fn = partial(init_layer, method=weight_init, init_depth=depth, zero_bias_init=zero_bias_init) |
|
tr_layer.apply(init_fn) |
|
|
|
for linear in self.linears: |
|
init_layer(linear, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init) |
|
|
|
@property |
|
def special_token_id(self) -> int: |
|
return self.card |
|
|
|
@property |
|
def num_codebooks(self) -> int: |
|
return self.n_q |
|
|
|
def forward(self, sequence: torch.Tensor, |
|
conditions: tp.List[ConditioningAttributes], |
|
condition_tensors: tp.Optional[ConditionTensors] = None) -> torch.Tensor: |
|
"""Apply language model on sequence and conditions. |
|
Given a tensor of sequence of shape [B, K, S] with K the number of codebooks and |
|
S the sequence steps, return the logits with shape [B, card, K, S]. |
|
|
|
Args: |
|
indices (torch.Tensor): indices of the codes to model. |
|
conditions (list[ConditioningAttributes]): conditionings to use when modeling |
|
the given codes. Note that when evaluating multiple time with the same conditioning |
|
you should pre-compute those and pass them as `condition_tensors`. |
|
condition_tensors (dict[str, ConditionType] or None): pre-computed conditioning |
|
tensors, see `conditions`. |
|
Returns: |
|
torch.Tensor: Logits. |
|
""" |
|
B, K, S = sequence.shape |
|
assert K == self.num_codebooks, 'Sequence shape must match the specified number of codebooks' |
|
input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)]) |
|
if condition_tensors is None: |
|
assert not self._is_streaming, "Conditions tensors should be precomputed when streaming." |
|
|
|
conditions = self.cfg_dropout(conditions) |
|
conditions = self.att_dropout(conditions) |
|
tokenized = self.condition_provider.tokenize(conditions) |
|
|
|
condition_tensors = self.condition_provider(tokenized) |
|
else: |
|
assert not conditions, "Shouldn't pass both conditions and condition_tensors." |
|
|
|
input_, cross_attention_input = self.fuser(input_, condition_tensors) |
|
|
|
out = self.transformer(input_, cross_attention_src=cross_attention_input) |
|
if self.out_norm: |
|
out = self.out_norm(out) |
|
logits = torch.stack([self.linears[k](out) for k in range(K)], dim=1) |
|
|
|
|
|
if len(self.fuser.fuse2cond['prepend']) > 0: |
|
logits = logits[:, :, -S:] |
|
|
|
return logits |
|
|
|
def compute_predictions( |
|
self, codes: torch.Tensor, |
|
conditions: tp.List[ConditioningAttributes], |
|
condition_tensors: tp.Optional[ConditionTensors] = None) -> LMOutput: |
|
"""Given an input tensor of codes [B, K, T] and list of conditions, runs the model |
|
forward using the specified codes interleaving pattern. |
|
|
|
Args: |
|
codes (torch.Tensor): Input codes of shape [B, K, T] with B the batch size, |
|
K the number of codebooks and T the number of timesteps. |
|
conditions (list[ConditioningAttributes]): conditionings to use when modeling |
|
the given codes. Note that when evaluating multiple time with the same conditioning |
|
you should pre-compute those and pass them as `condition_tensors`. |
|
condition_tensors (dict[str, ConditionType] or None): pre-computed conditioning |
|
tensors, see `conditions`. |
|
Returns: |
|
LMOutput: Language model outputs |
|
logits (torch.Tensor) of shape [B, K, T, card] corresponding to the provided codes, |
|
i.e. the first item corresponds to logits to predict the first code, meaning that |
|
no additional shifting of codes and logits is required. |
|
mask (torch.Tensor) of shape [B, K, T], mask over valid and invalid positions. |
|
Given the specified interleaving strategies, parts of the logits and codes should |
|
not be considered as valid predictions because of invalid context. |
|
""" |
|
B, K, T = codes.shape |
|
codes = codes.contiguous() |
|
|
|
pattern = self.pattern_provider.get_pattern(T) |
|
sequence_codes, sequence_indexes, sequence_mask = pattern.build_pattern_sequence( |
|
codes, self.special_token_id, keep_only_valid_steps=True |
|
) |
|
|
|
model = self if self._fsdp is None else self._fsdp |
|
logits = model(sequence_codes, conditions, condition_tensors) |
|
|
|
|
|
logits = logits.permute(0, 3, 1, 2) |
|
|
|
logits, logits_indexes, logits_mask = pattern.revert_pattern_logits( |
|
logits, float('nan'), keep_only_valid_steps=True |
|
) |
|
logits = logits.permute(0, 2, 3, 1) |
|
logits_mask = logits_mask[None, :, :].expand(B, -1, -1) |
|
return LMOutput(logits, logits_mask) |
|
|
|
def _sample_next_token(self, |
|
sequence: torch.Tensor, |
|
cfg_conditions: CFGConditions, |
|
unconditional_state: State, |
|
use_sampling: bool = False, |
|
temp: float = 1.0, |
|
top_k: int = 0, |
|
top_p: float = 0.0, |
|
cfg_coef: tp.Optional[float] = None) -> torch.Tensor: |
|
"""Sample next token from the model given a sequence and a set of conditions. The model supports |
|
multiple sampling strategies (greedy sampling, softmax, top-k, top-p...). |
|
|
|
Args: |
|
sequence (torch.Tensor): Current sequence of shape [B, K, S] |
|
with K corresponding to the number of codebooks and S the number of sequence steps. |
|
S = 1 in streaming mode, except for the first step that contains a bigger prompt. |
|
condition_tensors (Dict[str, ConditionType): Set of conditions. If CFG is used, |
|
should be twice the batch size, being the concatenation of the conditions + null conditions. |
|
use_sampling (bool): Whether to use a sampling strategy or not. |
|
temp (float): Sampling temperature. |
|
top_k (int): K for "top-k" sampling. |
|
top_p (float): P for "top-p" sampling. |
|
cfg_coef (float): classifier free guidance coefficient |
|
Returns: |
|
next_token (torch.Tensor): Next token tensor of shape [B, K, 1]. |
|
""" |
|
B = sequence.shape[0] |
|
cfg_coef = self.cfg_coef if cfg_coef is None else cfg_coef |
|
model = self if self._fsdp is None else self._fsdp |
|
if self.two_step_cfg and cfg_conditions != {}: |
|
assert isinstance(cfg_conditions, tuple) |
|
condition_tensors, null_condition_tensors = cfg_conditions |
|
cond_logits = model(sequence, conditions=[], condition_tensors=condition_tensors) |
|
state = self.get_streaming_state() |
|
self.set_streaming_state(unconditional_state) |
|
uncond_logits = model(sequence, conditions=[], condition_tensors=null_condition_tensors) |
|
unconditional_state.update(self.get_streaming_state()) |
|
self.set_streaming_state(state) |
|
logits = uncond_logits + (cond_logits - uncond_logits) * self.cfg_coef |
|
else: |
|
assert isinstance(cfg_conditions, dict) |
|
condition_tensors = cfg_conditions |
|
if condition_tensors: |
|
|
|
sequence = torch.cat([sequence, sequence], dim=0) |
|
all_logits = model( |
|
sequence, |
|
conditions=[], condition_tensors=condition_tensors) |
|
if condition_tensors: |
|
cond_logits, uncond_logits = all_logits.split(B, dim=0) |
|
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_coef |
|
else: |
|
logits = all_logits |
|
|
|
logits = logits.permute(0, 1, 3, 2) |
|
logits = logits[..., -1] |
|
|
|
if use_sampling: |
|
probs = torch.softmax(logits / temp, dim=-1) |
|
if top_p > 0.0: |
|
next_token = utils.sample_top_p(probs, p=top_p) |
|
elif top_k > 0: |
|
next_token = utils.sample_top_k(probs, k=top_k) |
|
else: |
|
next_token = utils.multinomial(probs, num_samples=1) |
|
else: |
|
next_token = torch.argmax(logits, dim=-1, keepdim=True) |
|
|
|
return next_token |
|
|
|
@torch.no_grad() |
|
def generate(self, |
|
prompt: tp.Optional[torch.Tensor] = None, |
|
conditions: tp.List[ConditioningAttributes] = [], |
|
num_samples: tp.Optional[int] = None, |
|
max_gen_len: int = 256, |
|
use_sampling: bool = True, |
|
temp: float = 1.0, |
|
top_k: int = 250, |
|
top_p: float = 0.0, |
|
cfg_coef: tp.Optional[float] = None, |
|
two_step_cfg: bool = False, |
|
remove_prompts: bool = False, |
|
check: bool = False, |
|
callback: tp.Optional[tp.Callable[[int, int], None]] = None) -> torch.Tensor: |
|
"""Generate tokens sampling from the model given a prompt or unconditionally. Generation can |
|
be perform in a greedy fashion or using sampling with top K and top P strategies. |
|
|
|
Args: |
|
prompt (Optional[torch.Tensor]): Prompt tokens of shape [B, K, T]. |
|
conditions_tensors (Dict[str, torch.Tensor]): Set of conditions or None. |
|
num_samples (int or None): Number of samples to generate when no prompt and no conditions are given. |
|
max_gen_len (int): Maximum generation length. |
|
use_sampling (bool): Whether to use a sampling strategy or not. |
|
temp (float): Sampling temperature. |
|
top_k (int): K for "top-k" sampling. |
|
top_p (float): P for "top-p" sampling. |
|
remove_prompts (bool): Whether to remove prompts from generation or not. |
|
Returns: |
|
torch.Tensor: Generated tokens. |
|
""" |
|
assert not self.training, "generation shouldn't be used in training mode." |
|
first_param = next(iter(self.parameters())) |
|
device = first_param.device |
|
|
|
|
|
possible_num_samples = [] |
|
if num_samples is not None: |
|
possible_num_samples.append(num_samples) |
|
elif prompt is not None: |
|
possible_num_samples.append(prompt.shape[0]) |
|
elif conditions: |
|
possible_num_samples.append(len(conditions)) |
|
else: |
|
possible_num_samples.append(1) |
|
assert [x == possible_num_samples[0] for x in possible_num_samples], "Inconsitent inputs shapes" |
|
num_samples = possible_num_samples[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cfg_conditions: CFGConditions |
|
two_step_cfg = self.two_step_cfg if two_step_cfg is None else two_step_cfg |
|
if conditions: |
|
null_conditions = ClassifierFreeGuidanceDropout(p=1.0)(conditions) |
|
if two_step_cfg: |
|
cfg_conditions = ( |
|
self.condition_provider(self.condition_provider.tokenize(conditions)), |
|
self.condition_provider(self.condition_provider.tokenize(null_conditions)), |
|
) |
|
else: |
|
conditions = conditions + null_conditions |
|
tokenized = self.condition_provider.tokenize(conditions) |
|
cfg_conditions = self.condition_provider(tokenized) |
|
else: |
|
cfg_conditions = {} |
|
|
|
if prompt is None: |
|
assert num_samples > 0 |
|
prompt = torch.zeros((num_samples, self.num_codebooks, 0), dtype=torch.long, device=device) |
|
|
|
B, K, T = prompt.shape |
|
start_offset = T |
|
assert start_offset < max_gen_len |
|
|
|
pattern = self.pattern_provider.get_pattern(max_gen_len) |
|
|
|
unknown_token = -1 |
|
|
|
|
|
gen_codes = torch.full((B, K, max_gen_len), unknown_token, dtype=torch.long, device=device) |
|
|
|
gen_codes[..., :start_offset] = prompt |
|
|
|
gen_sequence, indexes, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id) |
|
|
|
|
|
start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset) |
|
assert start_offset_sequence is not None |
|
|
|
with self.streaming(): |
|
unconditional_state = self.get_streaming_state() |
|
prev_offset = 0 |
|
gen_sequence_len = gen_sequence.shape[-1] |
|
for offset in range(start_offset_sequence, gen_sequence_len): |
|
|
|
curr_sequence = gen_sequence[..., prev_offset:offset] |
|
curr_mask = mask[None, ..., prev_offset:offset].expand(B, -1, -1) |
|
if check: |
|
|
|
assert (curr_sequence == torch.where(curr_mask, curr_sequence, self.special_token_id)).all() |
|
|
|
assert not (curr_sequence == unknown_token).any() |
|
|
|
next_token = self._sample_next_token( |
|
curr_sequence, cfg_conditions, unconditional_state, use_sampling, temp, top_k, top_p, |
|
cfg_coef=cfg_coef) |
|
|
|
|
|
valid_mask = mask[..., offset:offset+1].expand(B, -1, -1) |
|
next_token[~valid_mask] = self.special_token_id |
|
|
|
|
|
gen_sequence[..., offset:offset+1] = torch.where( |
|
gen_sequence[..., offset:offset+1] == unknown_token, |
|
next_token, gen_sequence[..., offset:offset+1] |
|
) |
|
prev_offset = offset |
|
if callback is not None: |
|
callback(1 + offset - start_offset_sequence, gen_sequence_len - start_offset_sequence) |
|
unconditional_state.clear() |
|
|
|
|
|
assert not (gen_sequence == unknown_token).any() |
|
|
|
|
|
assert ( |
|
gen_sequence == torch.where(mask[None, ...].expand(B, -1, -1), gen_sequence, self.special_token_id) |
|
).all() |
|
|
|
out_codes, out_indexes, out_mask = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token) |
|
|
|
|
|
assert (out_codes[..., :max_gen_len] != unknown_token).all() |
|
assert (out_mask[..., :max_gen_len] == 1).all() |
|
|
|
out_start_offset = start_offset if remove_prompts else 0 |
|
out_codes = out_codes[..., out_start_offset:max_gen_len] |
|
|
|
|
|
assert (out_codes >= 0).all() and (out_codes <= self.card).all() |
|
return out_codes |
|
|