|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from copy import deepcopy |
|
from dataclasses import dataclass, field |
|
from itertools import chain |
|
import logging |
|
import random |
|
import re |
|
import typing as tp |
|
import warnings |
|
|
|
from einops import rearrange |
|
from num2words import num2words |
|
import spacy |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
import torchaudio |
|
import torch |
|
from torch import nn |
|
from torch import Tensor |
|
import torch.nn.functional as F |
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
from .streaming import StreamingModule |
|
from .transformer import create_sin_embedding |
|
from ..data.audio_dataset import SegmentInfo |
|
from ..utils.autocast import TorchAutocast |
|
from ..utils.utils import hash_trick, length_to_mask, collate |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
TextCondition = tp.Optional[str] |
|
ConditionType = tp.Tuple[Tensor, Tensor] |
|
|
|
|
|
class WavCondition(tp.NamedTuple): |
|
wav: Tensor |
|
length: Tensor |
|
path: tp.List[tp.Optional[str]] = [] |
|
|
|
|
|
def nullify_condition(condition: ConditionType, dim: int = 1): |
|
"""This function transforms an input condition to a null condition. |
|
The way it is done by converting it to a single zero vector similarly |
|
to how it is done inside WhiteSpaceTokenizer and NoopTokenizer. |
|
|
|
Args: |
|
condition (ConditionType): a tuple of condition and mask (tp.Tuple[Tensor, Tensor]) |
|
dim (int): the dimension that will be truncated (should be the time dimension) |
|
WARNING!: dim should not be the batch dimension! |
|
Returns: |
|
ConditionType: a tuple of null condition and mask |
|
""" |
|
assert dim != 0, "dim cannot be the batch dimension!" |
|
assert type(condition) == tuple and \ |
|
type(condition[0]) == Tensor and \ |
|
type(condition[1]) == Tensor, "'nullify_condition' got an unexpected input type!" |
|
cond, mask = condition |
|
B = cond.shape[0] |
|
last_dim = cond.dim() - 1 |
|
out = cond.transpose(dim, last_dim) |
|
out = 0. * out[..., :1] |
|
out = out.transpose(dim, last_dim) |
|
mask = torch.zeros((B, 1), device=out.device).int() |
|
assert cond.dim() == out.dim() |
|
return out, mask |
|
|
|
|
|
def nullify_wav(wav: Tensor) -> WavCondition: |
|
"""Create a nullified WavCondition from a wav tensor with appropriate shape. |
|
|
|
Args: |
|
wav (Tensor): tensor of shape [B, T] |
|
Returns: |
|
WavCondition: wav condition with nullified wav. |
|
""" |
|
null_wav, _ = nullify_condition((wav, torch.zeros_like(wav)), dim=wav.dim() - 1) |
|
return WavCondition( |
|
wav=null_wav, |
|
length=torch.tensor([0] * wav.shape[0], device=wav.device), |
|
path=['null_wav'] * wav.shape[0] |
|
) |
|
|
|
|
|
@dataclass |
|
class ConditioningAttributes: |
|
text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict) |
|
wav: tp.Dict[str, WavCondition] = field(default_factory=dict) |
|
|
|
def __getitem__(self, item): |
|
return getattr(self, item) |
|
|
|
@property |
|
def text_attributes(self): |
|
return self.text.keys() |
|
|
|
@property |
|
def wav_attributes(self): |
|
return self.wav.keys() |
|
|
|
@property |
|
def attributes(self): |
|
return {"text": self.text_attributes, "wav": self.wav_attributes} |
|
|
|
def to_flat_dict(self): |
|
return { |
|
**{f"text.{k}": v for k, v in self.text.items()}, |
|
**{f"wav.{k}": v for k, v in self.wav.items()}, |
|
} |
|
|
|
@classmethod |
|
def from_flat_dict(cls, x): |
|
out = cls() |
|
for k, v in x.items(): |
|
kind, att = k.split(".") |
|
out[kind][att] = v |
|
return out |
|
|
|
|
|
class SegmentWithAttributes(SegmentInfo): |
|
"""Base class for all dataclasses that are used for conditioning. |
|
All child classes should implement `to_condition_attributes` that converts |
|
the existing attributes to a dataclass of type ConditioningAttributes. |
|
""" |
|
def to_condition_attributes(self) -> ConditioningAttributes: |
|
raise NotImplementedError() |
|
|
|
|
|
class Tokenizer: |
|
"""Base class for all tokenizers |
|
(in case we want to introduce more advances tokenizers in the future). |
|
""" |
|
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[Tensor, Tensor]: |
|
raise NotImplementedError() |
|
|
|
|
|
class WhiteSpaceTokenizer(Tokenizer): |
|
"""This tokenizer should be used for natural language descriptions. |
|
For example: |
|
["he didn't, know he's going home.", 'shorter sentence'] => |
|
[[78, 62, 31, 4, 78, 25, 19, 34], |
|
[59, 77, 0, 0, 0, 0, 0, 0]] |
|
""" |
|
PUNCTUATIONS = "?:!.,;" |
|
|
|
def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm", |
|
lemma: bool = True, stopwords: bool = True) -> None: |
|
self.n_bins = n_bins |
|
self.pad_idx = pad_idx |
|
self.lemma = lemma |
|
self.stopwords = stopwords |
|
try: |
|
self.nlp = spacy.load(language) |
|
except IOError: |
|
spacy.cli.download(language) |
|
self.nlp = spacy.load(language) |
|
|
|
@tp.no_type_check |
|
def __call__( |
|
self, |
|
texts: tp.List[tp.Optional[str]], |
|
return_text: bool = False |
|
) -> tp.Tuple[Tensor, Tensor]: |
|
"""Take a list of strings and convert them to a tensor of indices. |
|
|
|
Args: |
|
texts (tp.List[str]): List of strings. |
|
return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False. |
|
Returns: |
|
tp.Tuple[Tensor, Tensor]: |
|
- Indices of words in the LUT. |
|
- And a mask indicating where the padding tokens are |
|
""" |
|
output, lengths = [], [] |
|
texts = deepcopy(texts) |
|
for i, text in enumerate(texts): |
|
|
|
if text is None: |
|
output.append(Tensor([self.pad_idx])) |
|
lengths.append(0) |
|
continue |
|
|
|
|
|
text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text) |
|
|
|
text = self.nlp(text) |
|
|
|
if self.stopwords: |
|
text = [w for w in text if not w.is_stop] |
|
|
|
text = [w for w in text if w.text not in self.PUNCTUATIONS] |
|
|
|
text = [getattr(t, "lemma_" if self.lemma else "text") for t in text] |
|
|
|
texts[i] = " ".join(text) |
|
lengths.append(len(text)) |
|
|
|
tokens = Tensor([hash_trick(w, self.n_bins) for w in text]) |
|
output.append(tokens) |
|
|
|
mask = length_to_mask(torch.IntTensor(lengths)).int() |
|
padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t() |
|
if return_text: |
|
return padded_output, mask, texts |
|
return padded_output, mask |
|
|
|
|
|
class NoopTokenizer(Tokenizer): |
|
"""This tokenizer should be used for global conditioners such as: artist, genre, key, etc. |
|
The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split |
|
strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will |
|
split it to ["Jeff", "Buckley"] and return an index per word. |
|
|
|
For example: |
|
["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101] |
|
["Metal", "Rock", "Classical"] => [0, 223, 51] |
|
""" |
|
def __init__(self, n_bins: int, pad_idx: int = 0): |
|
self.n_bins = n_bins |
|
self.pad_idx = pad_idx |
|
|
|
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[Tensor, Tensor]: |
|
output, lengths = [], [] |
|
for text in texts: |
|
|
|
if text is None: |
|
output.append(self.pad_idx) |
|
lengths.append(0) |
|
else: |
|
output.append(hash_trick(text, self.n_bins)) |
|
lengths.append(1) |
|
|
|
tokens = torch.LongTensor(output).unsqueeze(1) |
|
mask = length_to_mask(torch.IntTensor(lengths)).int() |
|
return tokens, mask |
|
|
|
|
|
class BaseConditioner(nn.Module): |
|
"""Base model for all conditioner modules. We allow the output dim to be different |
|
than the hidden dim for two reasons: 1) keep our LUTs small when the vocab is large; |
|
2) make all condition dims consistent. |
|
|
|
Args: |
|
dim (int): Hidden dim of the model (text-encoder/LUT). |
|
output_dim (int): Output dim of the conditioner. |
|
""" |
|
def __init__(self, dim, output_dim): |
|
super().__init__() |
|
self.dim = dim |
|
self.output_dim = output_dim |
|
self.output_proj = nn.Linear(dim, output_dim) |
|
|
|
def tokenize(self, *args, **kwargs) -> tp.Any: |
|
"""Should be any part of the processing that will lead to a synchronization |
|
point, e.g. BPE tokenization with transfer to the GPU. |
|
|
|
The returned value will be saved and return later when calling forward(). |
|
""" |
|
raise NotImplementedError() |
|
|
|
def forward(self, inputs: tp.Any) -> ConditionType: |
|
"""Gets input that should be used as conditioning (e.g, genre, description or a waveform). |
|
Outputs a ConditionType, after the input data was embedded as a dense vector. |
|
|
|
Returns: |
|
ConditionType: |
|
- A tensor of size [B, T, D] where B is the batch size, T is the length of the |
|
output embedding and D is the dimension of the embedding. |
|
- And a mask indicating where the padding tokens. |
|
""" |
|
raise NotImplementedError() |
|
|
|
|
|
class TextConditioner(BaseConditioner): |
|
... |
|
|
|
|
|
class LUTConditioner(TextConditioner): |
|
"""Lookup table TextConditioner. |
|
|
|
Args: |
|
n_bins (int): Number of bins. |
|
dim (int): Hidden dim of the model (text-encoder/LUT). |
|
output_dim (int): Output dim of the conditioner. |
|
tokenizer (str): Name of the tokenizer. |
|
pad_idx (int, optional): Index for padding token. Defaults to 0. |
|
""" |
|
def __init__(self, n_bins: int, dim: int, output_dim: int, tokenizer: str, pad_idx: int = 0): |
|
super().__init__(dim, output_dim) |
|
self.embed = nn.Embedding(n_bins, dim) |
|
self.tokenizer: Tokenizer |
|
if tokenizer == "whitespace": |
|
self.tokenizer = WhiteSpaceTokenizer(n_bins, pad_idx=pad_idx) |
|
elif tokenizer == "noop": |
|
self.tokenizer = NoopTokenizer(n_bins, pad_idx=pad_idx) |
|
else: |
|
raise ValueError(f"unrecognized tokenizer `{tokenizer}`.") |
|
|
|
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]: |
|
device = self.embed.weight.device |
|
tokens, mask = self.tokenizer(x) |
|
tokens, mask = tokens.to(device), mask.to(device) |
|
return tokens, mask |
|
|
|
def forward(self, inputs: tp.Tuple[torch.Tensor, torch.Tensor]) -> ConditionType: |
|
tokens, mask = inputs |
|
embeds = self.embed(tokens) |
|
embeds = self.output_proj(embeds) |
|
embeds = (embeds * mask.unsqueeze(-1)) |
|
return embeds, mask |
|
|
|
|
|
class T5Conditioner(TextConditioner): |
|
"""T5-based TextConditioner. |
|
|
|
Args: |
|
name (str): Name of the T5 model. |
|
output_dim (int): Output dim of the conditioner. |
|
finetune (bool): Whether to fine-tune T5 at train time. |
|
device (str): Device for T5 Conditioner. |
|
autocast_dtype (tp.Optional[str], optional): Autocast dtype. |
|
word_dropout (float, optional): Word dropout probability. |
|
normalize_text (bool, optional): Whether to apply text normalization. |
|
""" |
|
MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", |
|
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", |
|
"google/flan-t5-xl", "google/flan-t5-xxl"] |
|
MODELS_DIMS = { |
|
"t5-small": 512, |
|
"t5-base": 768, |
|
"t5-large": 1024, |
|
"t5-3b": 1024, |
|
"t5-11b": 1024, |
|
"google/flan-t5-small": 512, |
|
"google/flan-t5-base": 768, |
|
"google/flan-t5-large": 1024, |
|
"google/flan-t5-3b": 1024, |
|
"google/flan-t5-11b": 1024, |
|
} |
|
|
|
def __init__(self, name: str, output_dim: int, finetune: bool, device: str, |
|
autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0., |
|
normalize_text: bool = False): |
|
assert name in self.MODELS, f"unrecognized t5 model name (should in {self.MODELS})" |
|
super().__init__(self.MODELS_DIMS[name], output_dim) |
|
self.device = device |
|
self.name = name |
|
self.finetune = finetune |
|
self.word_dropout = word_dropout |
|
|
|
if autocast_dtype is None or self.device == 'cpu': |
|
self.autocast = TorchAutocast(enabled=False) |
|
if self.device != 'cpu': |
|
logger.warning("T5 has no autocast, this might lead to NaN") |
|
else: |
|
dtype = getattr(torch, autocast_dtype) |
|
assert isinstance(dtype, torch.dtype) |
|
logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}") |
|
self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype) |
|
|
|
|
|
previous_level = logging.root.manager.disable |
|
logging.disable(logging.ERROR) |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
try: |
|
self.t5_tokenizer = T5Tokenizer.from_pretrained(name) |
|
t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune) |
|
finally: |
|
logging.disable(previous_level) |
|
if finetune: |
|
self.t5 = t5 |
|
else: |
|
|
|
|
|
self.__dict__["t5"] = t5.to(device) |
|
|
|
self.normalize_text = normalize_text |
|
if normalize_text: |
|
self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True) |
|
|
|
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]: |
|
|
|
entries: tp.List[str] = [xi if xi is not None else "" for xi in x] |
|
if self.normalize_text: |
|
_, _, entries = self.text_normalizer(entries, return_text=True) |
|
if self.word_dropout > 0. and self.training: |
|
new_entries = [] |
|
for entry in entries: |
|
words = [word for word in entry.split(" ") if random.random() >= self.word_dropout] |
|
new_entries.append(" ".join(words)) |
|
entries = new_entries |
|
|
|
empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""]) |
|
|
|
inputs = self.t5_tokenizer(entries, return_tensors="pt", padding=True).to(self.device) |
|
mask = inputs["attention_mask"] |
|
mask[empty_idx, :] = 0 |
|
return inputs |
|
|
|
def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType: |
|
mask = inputs["attention_mask"] |
|
with torch.set_grad_enabled(self.finetune), self.autocast: |
|
embeds = self.t5(**inputs).last_hidden_state |
|
embeds = self.output_proj(embeds.to(self.output_proj.weight)) |
|
embeds = (embeds * mask.unsqueeze(-1)) |
|
return embeds, mask |
|
|
|
|
|
class WaveformConditioner(BaseConditioner): |
|
"""Base class for all conditioners that take a waveform as input. |
|
Classes that inherit must implement `_get_wav_embedding` that outputs |
|
a continuous tensor, and `_downsampling_factor` that returns the down-sampling |
|
factor of the embedding model. |
|
|
|
Args: |
|
dim (int): The internal representation dimension. |
|
output_dim (int): Output dimension. |
|
device (tp.Union[torch.device, str]): Device. |
|
""" |
|
def __init__(self, dim: int, output_dim: int, device: tp.Union[torch.device, str]): |
|
super().__init__(dim, output_dim) |
|
self.device = device |
|
|
|
def tokenize(self, wav_length: WavCondition) -> WavCondition: |
|
wav, length, path = wav_length |
|
assert length is not None |
|
return WavCondition(wav.to(self.device), length.to(self.device), path) |
|
|
|
def _get_wav_embedding(self, wav: Tensor) -> Tensor: |
|
"""Gets as input a wav and returns a dense vector of conditions.""" |
|
raise NotImplementedError() |
|
|
|
def _downsampling_factor(self): |
|
"""Returns the downsampling factor of the embedding model.""" |
|
raise NotImplementedError() |
|
|
|
def forward(self, inputs: WavCondition) -> ConditionType: |
|
""" |
|
Args: |
|
input (WavCondition): Tuple of (waveform, lengths). |
|
Returns: |
|
ConditionType: Dense vector representing the conditioning along with its' mask. |
|
""" |
|
wav, lengths, path = inputs |
|
with torch.no_grad(): |
|
embeds = self._get_wav_embedding(wav) |
|
embeds = embeds.to(self.output_proj.weight) |
|
embeds = self.output_proj(embeds) |
|
|
|
if lengths is not None: |
|
lengths = lengths / self._downsampling_factor() |
|
mask = length_to_mask(lengths, max_len=embeds.shape[1]).int() |
|
else: |
|
mask = torch.ones_like(embeds) |
|
embeds = (embeds * mask.unsqueeze(2).to(self.device)) |
|
|
|
return embeds, mask |
|
|
|
|
|
class ChromaStemConditioner(WaveformConditioner): |
|
"""Chroma conditioner that uses DEMUCS to first filter out drums and bass. The is followed by |
|
the insight the drums and bass often dominate the chroma, leading to the chroma not containing the |
|
information about melody. |
|
|
|
Args: |
|
output_dim (int): Output dimension for the conditioner. |
|
sample_rate (int): Sample rate for the chroma extractor. |
|
n_chroma (int): Number of chroma for the chroma extractor. |
|
radix2_exp (int): Radix2 exponent for the chroma extractor. |
|
duration (float): Duration used during training. This is later used for correct padding |
|
in case we are using chroma as prefix. |
|
match_len_on_eval (bool, optional): If True then all chromas are padded to the training |
|
duration. Defaults to False. |
|
eval_wavs (str, optional): Path to a json egg with waveform, this waveforms are used as |
|
conditions during eval (for cases where we don't want to leak test conditions like MusicCaps). |
|
Defaults to None. |
|
n_eval_wavs (int, optional): Limits the number of waveforms used for conditioning. Defaults to 0. |
|
device (tp.Union[torch.device, str], optional): Device for the conditioner. |
|
**kwargs: Additional parameters for the chroma extractor. |
|
""" |
|
def __init__(self, output_dim: int, sample_rate: int, n_chroma: int, radix2_exp: int, |
|
duration: float, match_len_on_eval: bool = False, eval_wavs: tp.Optional[str] = None, |
|
n_eval_wavs: int = 0, device: tp.Union[torch.device, str] = "cpu", **kwargs): |
|
from demucs import pretrained |
|
super().__init__(dim=n_chroma, output_dim=output_dim, device=device) |
|
self.autocast = TorchAutocast(enabled=device != "cpu", device_type=self.device, dtype=torch.float32) |
|
self.sample_rate = sample_rate |
|
self.match_len_on_eval = match_len_on_eval |
|
self.duration = duration |
|
self.__dict__["demucs"] = pretrained.get_model('htdemucs').to(device) |
|
self.stem2idx = {'drums': 0, 'bass': 1, 'other': 2, 'vocal': 3} |
|
self.stem_idx = torch.LongTensor([self.stem2idx['vocal'], self.stem2idx['other']]).to(device) |
|
self.chroma = ChromaExtractor(sample_rate=sample_rate, n_chroma=n_chroma, radix2_exp=radix2_exp, |
|
device=device, **kwargs) |
|
self.chroma_len = self._get_chroma_len() |
|
|
|
def _downsampling_factor(self): |
|
return self.chroma.winhop |
|
|
|
def _get_chroma_len(self): |
|
"""Get length of chroma during training""" |
|
dummy_wav = torch.zeros((1, self.sample_rate * self.duration), device=self.device) |
|
dummy_chr = self.chroma(dummy_wav) |
|
return dummy_chr.shape[1] |
|
|
|
@torch.no_grad() |
|
def _get_filtered_wav(self, wav): |
|
from demucs.apply import apply_model |
|
from demucs.audio import convert_audio |
|
with self.autocast: |
|
wav = convert_audio(wav, self.sample_rate, self.demucs.samplerate, self.demucs.audio_channels) |
|
stems = apply_model(self.demucs, wav, device=self.device) |
|
stems = stems[:, self.stem_idx] |
|
stems = stems.sum(1) |
|
stems = stems.mean(1, keepdim=True) |
|
stems = convert_audio(stems, self.demucs.samplerate, self.sample_rate, 1) |
|
return stems |
|
|
|
@torch.no_grad() |
|
def _get_wav_embedding(self, wav): |
|
|
|
if wav.shape[-1] == 1: |
|
return self.chroma(wav) |
|
stems = self._get_filtered_wav(wav) |
|
chroma = self.chroma(stems) |
|
|
|
if self.match_len_on_eval: |
|
b, t, c = chroma.shape |
|
if t > self.chroma_len: |
|
chroma = chroma[:, :self.chroma_len] |
|
logger.debug(f'chroma was truncated! ({t} -> {chroma.shape[1]})') |
|
elif t < self.chroma_len: |
|
chroma = F.pad(chroma, (0, 0, 0, self.chroma_len - t)) |
|
logger.debug(f'chroma was zero-padded! ({t} -> {chroma.shape[1]})') |
|
return chroma |
|
|
|
|
|
class ChromaExtractor(nn.Module): |
|
"""Chroma extraction class, handles chroma extraction and quantization. |
|
|
|
Args: |
|
sample_rate (int): Sample rate. |
|
n_chroma (int): Number of chroma to consider. |
|
radix2_exp (int): Radix2 exponent. |
|
nfft (tp.Optional[int], optional): Number of FFT. |
|
winlen (tp.Optional[int], optional): Window length. |
|
winhop (tp.Optional[int], optional): Window hop size. |
|
argmax (bool, optional): Whether to use argmax. Defaults to False. |
|
norm (float, optional): Norm for chroma normalization. Defaults to inf. |
|
device (tp.Union[torch.device, str], optional): Device to use. Defaults to cpu. |
|
""" |
|
def __init__(self, sample_rate: int, n_chroma: int = 12, radix2_exp: int = 12, |
|
nfft: tp.Optional[int] = None, winlen: tp.Optional[int] = None, winhop: tp.Optional[int] = None, |
|
argmax: bool = False, norm: float = torch.inf, device: tp.Union[torch.device, str] = "cpu"): |
|
super().__init__() |
|
from librosa import filters |
|
self.device = device |
|
self.autocast = TorchAutocast(enabled=device != "cpu", device_type=self.device, dtype=torch.float32) |
|
self.winlen = winlen or 2 ** radix2_exp |
|
self.nfft = nfft or self.winlen |
|
self.winhop = winhop or (self.winlen // 4) |
|
self.sr = sample_rate |
|
self.n_chroma = n_chroma |
|
self.norm = norm |
|
self.argmax = argmax |
|
self.window = torch.hann_window(self.winlen).to(device) |
|
self.fbanks = torch.from_numpy(filters.chroma(sr=sample_rate, n_fft=self.nfft, tuning=0, |
|
n_chroma=self.n_chroma)).to(device) |
|
self.spec = torchaudio.transforms.Spectrogram(n_fft=self.nfft, win_length=self.winlen, |
|
hop_length=self.winhop, power=2, center=True, |
|
pad=0, normalized=True).to(device) |
|
|
|
def forward(self, wav): |
|
with self.autocast: |
|
T = wav.shape[-1] |
|
|
|
|
|
if T < self.nfft: |
|
pad = self.nfft - T |
|
r = 0 if pad % 2 == 0 else 1 |
|
wav = F.pad(wav, (pad // 2, pad // 2 + r), 'constant', 0) |
|
assert wav.shape[-1] == self.nfft, f'expected len {self.nfft} but got {wav.shape[-1]}' |
|
spec = self.spec(wav).squeeze(1) |
|
raw_chroma = torch.einsum("cf,...ft->...ct", self.fbanks, spec) |
|
norm_chroma = torch.nn.functional.normalize(raw_chroma, p=self.norm, dim=-2, eps=1e-6) |
|
norm_chroma = rearrange(norm_chroma, "b d t -> b t d") |
|
|
|
if self.argmax: |
|
idx = norm_chroma.argmax(-1, keepdims=True) |
|
norm_chroma[:] = 0 |
|
norm_chroma.scatter_(dim=-1, index=idx, value=1) |
|
|
|
return norm_chroma |
|
|
|
|
|
def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str): |
|
"""Utility function for nullifying an attribute inside an ConditioningAttributes object. |
|
If the condition is of type "wav", then nullify it using "nullify_condition". |
|
If the condition is of any other type, set its' value to None. |
|
Works in-place. |
|
""" |
|
if condition_type not in ["text", "wav"]: |
|
raise ValueError( |
|
"dropout_condition got an unexpected condition type!" |
|
f" expected 'wav' or 'text' but got '{condition_type}'" |
|
) |
|
|
|
if condition not in getattr(sample, condition_type): |
|
raise ValueError( |
|
"dropout_condition received an unexpected condition!" |
|
f" expected wav={sample.wav.keys()} and text={sample.text.keys()}" |
|
f"but got '{condition}' of type '{condition_type}'!" |
|
) |
|
|
|
if condition_type == "wav": |
|
wav, length, path = sample.wav[condition] |
|
sample.wav[condition] = nullify_wav(wav) |
|
else: |
|
sample.text[condition] = None |
|
|
|
return sample |
|
|
|
|
|
class DropoutModule(nn.Module): |
|
"""Base class for all dropout modules.""" |
|
def __init__(self, seed: int = 1234): |
|
super().__init__() |
|
self.rng = torch.Generator() |
|
self.rng.manual_seed(seed) |
|
|
|
|
|
class AttributeDropout(DropoutModule): |
|
"""Applies dropout with a given probability per attribute. This is different from the behavior of |
|
ClassifierFreeGuidanceDropout as this allows for attributes to be dropped out separately. For example, |
|
"artist" can be dropped while "genre" remains. This is in contrast to ClassifierFreeGuidanceDropout |
|
where if "artist" is dropped "genre" must also be dropped. |
|
|
|
Args: |
|
p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example: |
|
... |
|
"genre": 0.1, |
|
"artist": 0.5, |
|
"wav": 0.25, |
|
... |
|
active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False. |
|
seed (int, optional): Random seed. |
|
""" |
|
def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234): |
|
super().__init__(seed=seed) |
|
self.active_on_eval = active_on_eval |
|
|
|
self.p = {} |
|
for condition_type, probs in p.items(): |
|
self.p[condition_type] = defaultdict(lambda: 0, probs) |
|
|
|
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: |
|
""" |
|
Args: |
|
samples (tp.List[ConditioningAttributes]): List of conditions. |
|
Returns: |
|
tp.List[ConditioningAttributes]: List of conditions after certain attributes were set to None. |
|
""" |
|
if not self.training and not self.active_on_eval: |
|
return samples |
|
|
|
samples = deepcopy(samples) |
|
|
|
for condition_type, ps in self.p.items(): |
|
for condition, p in ps.items(): |
|
if torch.rand(1, generator=self.rng).item() < p: |
|
for sample in samples: |
|
dropout_condition(sample, condition_type, condition) |
|
|
|
return samples |
|
|
|
def __repr__(self): |
|
return f"AttributeDropout({dict(self.p)})" |
|
|
|
|
|
class ClassifierFreeGuidanceDropout(DropoutModule): |
|
"""Applies Classifier Free Guidance dropout, meaning all attributes |
|
are dropped with the same probability. |
|
|
|
Args: |
|
p (float): Probability to apply condition dropout during training. |
|
seed (int): Random seed. |
|
""" |
|
def __init__(self, p: float, seed: int = 1234): |
|
super().__init__(seed=seed) |
|
self.p = p |
|
|
|
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: |
|
""" |
|
Args: |
|
samples (tp.List[ConditioningAttributes]): List of conditions. |
|
Returns: |
|
tp.List[ConditioningAttributes]: List of conditions after all attributes were set to None. |
|
""" |
|
if not self.training: |
|
return samples |
|
|
|
|
|
drop = torch.rand(1, generator=self.rng).item() < self.p |
|
if not drop: |
|
return samples |
|
|
|
|
|
samples = deepcopy(samples) |
|
|
|
for condition_type in ["wav", "text"]: |
|
for sample in samples: |
|
for condition in sample.attributes[condition_type]: |
|
dropout_condition(sample, condition_type, condition) |
|
|
|
return samples |
|
|
|
def __repr__(self): |
|
return f"ClassifierFreeGuidanceDropout(p={self.p})" |
|
|
|
|
|
class ConditioningProvider(nn.Module): |
|
"""Main class to provide conditions given all the supported conditioners. |
|
|
|
Args: |
|
conditioners (dict): Dictionary of conditioners. |
|
merge_text_conditions_p (float, optional): Probability to merge all text sources |
|
into a single text condition. Defaults to 0. |
|
drop_desc_p (float, optional): Probability to drop the original description |
|
when merging all text sources into a single text condition. Defaults to 0. |
|
device (tp.Union[torch.device, str], optional): Device for conditioners and output condition types. |
|
""" |
|
def __init__( |
|
self, |
|
conditioners: tp.Dict[str, BaseConditioner], |
|
merge_text_conditions_p: float = 0, |
|
drop_desc_p: float = 0, |
|
device: tp.Union[torch.device, str] = "cpu", |
|
): |
|
super().__init__() |
|
self.device = device |
|
self.merge_text_conditions_p = merge_text_conditions_p |
|
self.drop_desc_p = drop_desc_p |
|
self.conditioners = nn.ModuleDict(conditioners) |
|
|
|
@property |
|
def text_conditions(self): |
|
return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)] |
|
|
|
@property |
|
def wav_conditions(self): |
|
return [k for k, v in self.conditioners.items() if isinstance(v, WaveformConditioner)] |
|
|
|
@property |
|
def has_wav_condition(self): |
|
return len(self.wav_conditions) > 0 |
|
|
|
def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]: |
|
"""Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly. |
|
This should be called before starting any real GPU work to avoid synchronization points. |
|
This will return a dict matching conditioner names to their arbitrary tokenized representations. |
|
|
|
Args: |
|
inputs (list[ConditioningAttribres]): List of ConditioningAttributes objects containing |
|
text and wav conditions. |
|
""" |
|
assert all([type(x) == ConditioningAttributes for x in inputs]), \ |
|
"got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]" \ |
|
f" but types were {set([type(x) for x in inputs])}" |
|
|
|
output = {} |
|
text = self._collate_text(inputs) |
|
wavs = self._collate_wavs(inputs) |
|
|
|
assert set(text.keys() | wavs.keys()).issubset(set(self.conditioners.keys())), \ |
|
f"got an unexpected attribute! Expected {self.conditioners.keys()}, got {text.keys(), wavs.keys()}" |
|
|
|
for attribute, batch in chain(text.items(), wavs.items()): |
|
output[attribute] = self.conditioners[attribute].tokenize(batch) |
|
return output |
|
|
|
def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]: |
|
"""Compute pairs of `(embedding, mask)` using the configured conditioners |
|
and the tokenized representations. The output is for example: |
|
|
|
{ |
|
"genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])), |
|
"description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])), |
|
... |
|
} |
|
|
|
Args: |
|
tokenized (dict): Dict of tokenized representations as returned by `tokenize()`. |
|
""" |
|
output = {} |
|
for attribute, inputs in tokenized.items(): |
|
condition, mask = self.conditioners[attribute](inputs) |
|
output[attribute] = (condition, mask) |
|
return output |
|
|
|
def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]: |
|
"""Given a list of ConditioningAttributes objects, compile a dictionary where the keys |
|
are the attributes and the values are the aggregated input per attribute. |
|
For example: |
|
Input: |
|
[ |
|
ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...), |
|
ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...), |
|
] |
|
Output: |
|
{ |
|
"genre": ["Rock", "Hip-hop"], |
|
"description": ["A rock song with a guitar solo", "A hip-hop verse"] |
|
} |
|
""" |
|
batch_per_attribute: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list) |
|
|
|
def _merge_conds(cond, merge_text_conditions_p=0, drop_desc_p=0): |
|
def is_valid(k, v): |
|
k_valid = k in ['key', 'bpm', 'genre', 'moods', 'instrument'] |
|
v_valid = v is not None and isinstance(v, (int, float, str, list)) |
|
return k_valid and v_valid |
|
|
|
def process_value(v): |
|
if isinstance(v, (int, float, str)): |
|
return v |
|
if isinstance(v, list): |
|
return ", ".join(v) |
|
else: |
|
RuntimeError(f"unknown type for text value! ({type(v), v})") |
|
|
|
desc = cond.text['description'] |
|
meta_data = "" |
|
if random.uniform(0, 1) < merge_text_conditions_p: |
|
meta_pairs = [f'{k}: {process_value(v)}' for k, v in cond.text.items() if is_valid(k, v)] |
|
random.shuffle(meta_pairs) |
|
meta_data = ". ".join(meta_pairs) |
|
desc = desc if not random.uniform(0, 1) < drop_desc_p else None |
|
|
|
if desc is None: |
|
desc = meta_data if len(meta_data) > 1 else None |
|
else: |
|
desc = desc.rstrip('.') + ". " + meta_data |
|
cond.text['description'] = desc.strip() if desc else None |
|
|
|
if self.training and self.merge_text_conditions_p: |
|
for sample in samples: |
|
_merge_conds(sample, self.merge_text_conditions_p, self.drop_desc_p) |
|
|
|
texts = [x.text for x in samples] |
|
for text in texts: |
|
for condition in self.text_conditions: |
|
batch_per_attribute[condition].append(text[condition]) |
|
|
|
return batch_per_attribute |
|
|
|
def _collate_wavs(self, samples: tp.List[ConditioningAttributes]): |
|
"""Generate a dict where the keys are attributes by which we fetch similar wavs, |
|
and the values are Tensors of wavs according to said attribtues. |
|
|
|
*Note*: by the time the samples reach this function, each sample should have some waveform |
|
inside the "wav" attribute. It should be either: |
|
1. A real waveform |
|
2. A null waveform due to the sample having no similar waveforms (nullified by the dataset) |
|
3. A null waveform due to it being dropped in a dropout module (nullified by dropout) |
|
|
|
Args: |
|
samples (tp.List[ConditioningAttributes]): List of ConditioningAttributes samples. |
|
Returns: |
|
dict: A dicionary mapping an attribute name to wavs. |
|
""" |
|
wavs = defaultdict(list) |
|
lens = defaultdict(list) |
|
paths = defaultdict(list) |
|
out = {} |
|
|
|
for sample in samples: |
|
for attribute in self.wav_conditions: |
|
wav, length, path = sample.wav[attribute] |
|
wavs[attribute].append(wav.flatten()) |
|
lens[attribute].append(length) |
|
paths[attribute].append(path) |
|
|
|
|
|
for attribute in self.wav_conditions: |
|
stacked_wav, _ = collate(wavs[attribute], dim=0) |
|
out[attribute] = WavCondition(stacked_wav.unsqueeze(1), |
|
torch.cat(lens['self_wav']), paths[attribute]) |
|
|
|
return out |
|
|
|
|
|
class ConditionFuser(StreamingModule): |
|
"""Condition fuser handles the logic to combine the different conditions |
|
to the actual model input. |
|
|
|
Args: |
|
fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse |
|
each condition. For example: |
|
{ |
|
"prepend": ["description"], |
|
"sum": ["genre", "bpm"], |
|
"cross": ["description"], |
|
} |
|
cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention. |
|
cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used. |
|
""" |
|
FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"] |
|
|
|
def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False, |
|
cross_attention_pos_emb_scale: float = 1.0): |
|
super().__init__() |
|
assert all( |
|
[k in self.FUSING_METHODS for k in fuse2cond.keys()] |
|
), f"got invalid fuse method, allowed methods: {self.FUSING_MEHTODS}" |
|
self.cross_attention_pos_emb = cross_attention_pos_emb |
|
self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale |
|
self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond |
|
self.cond2fuse: tp.Dict[str, str] = {} |
|
for fuse_method, conditions in fuse2cond.items(): |
|
for condition in conditions: |
|
self.cond2fuse[condition] = fuse_method |
|
|
|
def forward( |
|
self, |
|
input: Tensor, |
|
conditions: tp.Dict[str, ConditionType] |
|
) -> tp.Tuple[Tensor, tp.Optional[Tensor]]: |
|
"""Fuse the conditions to the provided model input. |
|
|
|
Args: |
|
input (Tensor): Transformer input. |
|
conditions (tp.Dict[str, ConditionType]): Dict of conditions. |
|
Returns: |
|
tp.Tuple[Tensor, Tensor]: The first tensor is the transformer input |
|
after the conditions have been fused. The second output tensor is the tensor |
|
used for cross-attention or None if no cross attention inputs exist. |
|
""" |
|
B, T, _ = input.shape |
|
|
|
if 'offsets' in self._streaming_state: |
|
first_step = False |
|
offsets = self._streaming_state['offsets'] |
|
else: |
|
first_step = True |
|
offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device) |
|
|
|
assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \ |
|
f"given conditions contain unknown attributes for fuser, " \ |
|
f"expected {self.cond2fuse.keys()}, got {conditions.keys()}" |
|
cross_attention_output = None |
|
for cond_type, (cond, cond_mask) in conditions.items(): |
|
op = self.cond2fuse[cond_type] |
|
if op == "sum": |
|
input += cond |
|
elif op == "input_interpolate": |
|
cond = rearrange(cond, "b t d -> b d t") |
|
cond = F.interpolate(cond, size=input.shape[1]) |
|
input += rearrange(cond, "b d t -> b t d") |
|
elif op == "prepend": |
|
if first_step: |
|
input = torch.cat([cond, input], dim=1) |
|
elif op == "cross": |
|
if cross_attention_output is not None: |
|
cross_attention_output = torch.cat([cross_attention_output, cond], dim=1) |
|
else: |
|
cross_attention_output = cond |
|
else: |
|
raise ValueError(f"unknown op ({op})") |
|
|
|
if self.cross_attention_pos_emb and cross_attention_output is not None: |
|
positions = torch.arange( |
|
cross_attention_output.shape[1], |
|
device=cross_attention_output.device |
|
).view(1, -1, 1) |
|
pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1]) |
|
cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb |
|
|
|
if self._is_streaming: |
|
self._streaming_state['offsets'] = offsets + T |
|
|
|
return input, cross_attention_output |
|
|