MusicGen / tests /modules /test_rope.py
adefossez's picture
support both torch and xformers + merge apps
6ec60d5
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from audiocraft.modules.rope import RotaryEmbedding
from audiocraft.modules.transformer import StreamingTransformer, set_efficient_attention_backend
def test_rope():
set_efficient_attention_backend('xformers')
B, T, H, C = 8, 75, 16, 128
rope = RotaryEmbedding(dim=C)
xq = torch.rand((B, T, H, C))
xk = torch.rand((B, T, H, C))
xq_out, xk_out = rope.rotate_qk(xq, xk, start=7)
assert list(xq_out.shape) == [B, T, H, C]
assert list(xk_out.shape) == [B, T, H, C]
def test_rope_io_dtypes():
set_efficient_attention_backend('xformers')
B, T, H, C = 8, 75, 16, 128
rope_32 = RotaryEmbedding(dim=C, dtype=torch.float32)
rope_64 = RotaryEmbedding(dim=C, dtype=torch.float64)
# Test bfloat16 inputs w/ both 32 and 64 precision rope.
xq_16 = torch.rand((B, T, H, C)).to(torch.bfloat16)
xk_16 = torch.rand((B, T, H, C)).to(torch.bfloat16)
xq_out, xk_out = rope_32.rotate_qk(xq_16, xk_16)
assert xq_out.dtype == torch.bfloat16
xq_out, xk_out = rope_64.rotate_qk(xq_16, xk_16)
assert xq_out.dtype == torch.bfloat16
# Test float32 inputs w/ both 32 and 64 precision rope.
xq_32 = torch.rand((B, T, H, C)).to(torch.float32)
xk_32 = torch.rand((B, T, H, C)).to(torch.float32)
xq_out, xk_out = rope_32.rotate_qk(xq_32, xk_32)
assert xq_out.dtype == torch.float32
xq_out, xk_out = rope_64.rotate_qk(xq_32, xk_32)
assert xq_out.dtype == torch.float32
def test_transformer_with_rope():
set_efficient_attention_backend('xformers')
torch.manual_seed(1234)
for pos in ['rope', 'sin_rope']:
tr = StreamingTransformer(
16, 4, 2, custom=True, dropout=0., layer_scale=0.1,
positional_embedding=pos)
tr.eval()
steps = 12
x = torch.randn(3, steps, 16)
out = tr(x)
assert list(out.shape) == list(x.shape)
@torch.no_grad()
def test_rope_streaming():
set_efficient_attention_backend('xformers')
torch.manual_seed(1234)
tr = StreamingTransformer(
16, 4, 2, causal=True, dropout=0.,
custom=True, positional_embedding='rope')
tr.eval()
steps = 12
x = torch.randn(3, steps, 16)
ref = tr(x)
with tr.streaming():
outs = []
frame_sizes = [1] * steps
for frame_size in frame_sizes:
frame = x[:, :frame_size]
x = x[:, frame_size:]
outs.append(tr(frame))
out = torch.cat(outs, dim=1)
assert list(out.shape) == [3, steps, 16]
delta = torch.norm(out - ref) / torch.norm(out)
assert delta < 1e-6, delta
@torch.no_grad()
def test_rope_streaming_past_context():
set_efficient_attention_backend('xformers')
torch.manual_seed(1234)
for context in [None, 10]:
tr = StreamingTransformer(
16, 4, 1 if context else 2,
causal=True, past_context=context, custom=True,
dropout=0., positional_embedding='rope')
tr.eval()
steps = 20
x = torch.randn(3, steps, 16)
ref = tr(x)
with tr.streaming():
outs = []
frame_sizes = [1] * steps
for frame_size in frame_sizes:
frame = x[:, :frame_size]
x = x[:, frame_size:]
outs.append(tr(frame))
out = torch.cat(outs, dim=1)
assert list(out.shape) == [3, steps, 16]
delta = torch.norm(out - ref) / torch.norm(out)
assert delta < 1e-6, delta
def test_rope_memory_efficient():
set_efficient_attention_backend('xformers')
torch.manual_seed(1234)
tr = StreamingTransformer(
16, 4, 2, custom=True, dropout=0., layer_scale=0.1,
positional_embedding='rope')
tr_mem_efficient = StreamingTransformer(
16, 4, 2, dropout=0., memory_efficient=True, layer_scale=0.1,
positional_embedding='rope')
tr_mem_efficient.load_state_dict(tr.state_dict())
tr.eval()
steps = 12
x = torch.randn(3, steps, 16)
with torch.no_grad():
y = tr(x)
y2 = tr_mem_efficient(x)
# Check at float precision b/c this is the rope default.
assert torch.allclose(y, y2, atol=1e-7), (y - y2).norm()
def test_rope_with_xpos():
set_efficient_attention_backend('xformers')
B, T, H, C = 8, 75, 16, 128
rope = RotaryEmbedding(dim=C, xpos=True)
xq = torch.rand((B, T, H, C))
xk = torch.rand((B, T, H, C))
xq_out, xk_out = rope.rotate_qk(xq, xk, start=7)
assert list(xq_out.shape) == [B, T, H, C]
assert list(xk_out.shape) == [B, T, H, C]
def test_positional_scale():
set_efficient_attention_backend('xformers')
B, T, H, C = 8, 75, 16, 128
rope = RotaryEmbedding(dim=C, xpos=True, scale=0.0)
xq = torch.rand((B, T, H, C))
xk = torch.rand((B, T, H, C))
xq_out, xk_out = rope.rotate_qk(xq, xk, start=7)
assert torch.allclose(xq, xq_out)
assert torch.allclose(xk, xk_out)