Spaces:
Runtime error
Runtime error
File size: 8,452 Bytes
92fbdae eec8c3a 92fbdae eec8c3a 92fbdae eec8c3a 92fbdae eec8c3a 92fbdae eec8c3a 92fbdae 78ff2e4 92fbdae 78ff2e4 92fbdae 78ff2e4 92fbdae 78ff2e4 92fbdae eec8c3a 92fbdae 78ff2e4 cf60b35 92fbdae 0681881 92fbdae 585fd83 92fbdae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
from datetime import datetime
#from models import models
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"bigcode/starcoder2-15b",
"bigcode/starcoder2-7b",
"bigcode/starcoder2-3b",
]
def test_models():
log_box=[]
for model in models:
start_time = datetime.now()
try:
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=128,
top_p=0.9,
repetition_penalty=1.0,
do_sample=True,
seed=111111111,
)
print(f'trying: {model}\n')
client= InferenceClient(model)
outp=""
stream=client.text_generation("What is a cat", **generate_kwargs, stream=True, details=True, return_full_text=True)
for response in stream:
outp += response.token.text
print (outp)
time_delta = datetime.now() - start_time
count=time_delta.total_seconds()
#if time_delta.total_seconds() >= 180:
log = {"Model":model,"Status":"Success","Output":outp, "Time":count}
print(f'{log}\n')
log_box.append(log)
except Exception as e:
time_delta = datetime.now() - start_time
count=time_delta.total_seconds()
log = {"Model":model,"Status":"Error","Output":e,"Time":count}
print(f'{log}\n')
log_box.append(log)
yield log_box
def format_prompt_default(message, history,cust_p):
prompt = ""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"<|startoftext|>{user_prompt}<|endoftext|>"
print(prompt)
prompt += f"<|startoftext|>{bot_response}<|endoftext|>"
print(prompt)
prompt += "<|startoftext|>"
prompt+=cust_p.replace("USER_INPUT",message)
prompt += "<|endoftext|>"
prompt += "<|startoftext|>"
return prompt
def load_models(inp):
print(type(inp))
print(inp)
print(models[inp])
model_state= InferenceClient(models[inp])
out_box=gr.update(label=models[inp])
prompt_out="<|startoftext|>USER_INPUT<|endoftext|>"
return out_box,prompt_out, model_state
VERBOSE=False
def chat_inf(prompt,model_state,model_name,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
#token max=8192
#model_n=models[model_name]
#print(model_state)
hist_len=0
client=model_state
#if not history:
# history = []
# hist_len=0
#if not memory:
# memory = []
# mem_len=0
#if memory:
# for ea in memory[0-chat_mem:]:
# hist_len+=len(str(ea))
#in_len=len(system_prompt+prompt)+hist_len
#if (in_len+tokens) > 8000:
# history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
# yield history,memory
#else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = prompt
for response in stream:
output += response.token.text
yield output
#history.append((prompt,output))
#memory.append((prompt,output))
yield output
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
print(chatblock)
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
print(out)
return out
def clear_fn():
return None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
model_state=gr.State()
memory=gr.State()
gr.HTML("""<center><h1 style='font-size:xx-large;'>Huggingface Hub InferenceClient</h1><br><h3>Chatbot's</h3></center>""")
#chat_b = gr.Chatbot(height=500)
chat_b = gr.Textbox(lines=10)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Accordion("Prompt Format",open=False):
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
test_btn=gr.Button("Test")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.99)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.99)
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=1.2)
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
test_json=gr.JSON(label="Test Output")
#test_btn.click(test_models,None,test_json)
c_comp=chat_b.input(chat_inf,[chat_b,model_state,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b])
client_choice.change(load_models,client_choice,[chat_b,custom_prompt,model_state])
app.load(load_models,client_choice,[chat_b,custom_prompt,model_state])
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
#chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
#go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
stop_btn.click(None,None,None,cancels=[im_go,c_comp])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
app.queue(default_concurrency_limit=10).launch() |