Translate-Image / app.py
radames's picture
possible avoiding file clashing
ead9ffa
raw
history blame
8.6 kB
import gradio as gr
import pandas as pd
import numpy as np
import easyocr
import torch
import cv2
import PIL
import sys
import os
import uuid
from PIL import ImageFont, ImageDraw, Image
this=gr.Interface.load("spaces/Omnibus/Translate-100")
lang_id = {
"":"",
"Afrikaans": "af",
"Albanian": "sq",
"Amharic": "am",
"Arabic": "ar",
"Armenian": "hy",
"Asturian": "ast",
"Azerbaijani": "az",
"Bashkir": "ba",
"Belarusian": "be",
"Bulgarian": "bg",
"Bengali": "bn",
"Breton": "br",
"Bosnian": "bs",
"Burmese": "my",
"Catalan": "ca",
"Cebuano": "ceb",
"Chinese": "zh",
"Chinese (simplified)": "zh",
"Chinese (traditional)": "zh",
"Croatian": "hr",
"Czech": "cs",
"Danish": "da",
"Dutch": "nl",
"English": "en",
"Estonian": "et",
"Fulah": "ff",
"Finnish": "fi",
"French": "fr",
"Western Frisian": "fy",
"Gaelic": "gd",
"Galician": "gl",
"Georgian": "ka",
"German": "de",
"Greek": "el",
"Gujarati": "gu",
"Hausa": "ha",
"Hebrew": "he",
"Hindi": "hi",
"Haitian": "ht",
"Hungarian": "hu",
"Irish": "ga",
"Indonesian": "id",
"Igbo": "ig",
"Iloko": "ilo",
"Icelandic": "is",
"Italian": "it",
"Japanese": "ja",
"Javanese": "jv",
"Kazakh": "kk",
"Central Khmer": "km",
"Kannada": "kn",
"Korean": "ko",
"Luxembourgish": "lb",
"Ganda": "lg",
"Lingala": "ln",
"Lao": "lo",
"Lithuanian": "lt",
"Latvian": "lv",
"Malagasy": "mg",
"Macedonian": "mk",
"Malayalam": "ml",
"Mongolian": "mn",
"Marathi": "mr",
"Malay": "ms",
"Nepali": "ne",
"Norwegian": "no",
"Northern Sotho": "ns",
"Occitan": "oc",
"Oriya": "or",
"Panjabi": "pa",
"Persian": "fa",
"Polish": "pl",
"Pushto": "ps",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
"Sindhi": "sd",
"Sinhala": "si",
"Slovak": "sk",
"Slovenian": "sl",
"Spanish": "es",
"Somali": "so",
"Serbian": "sr",
"Serbian (cyrillic)": "sr",
"Serbian (latin)": "sr",
"Swati": "ss",
"Sundanese": "su",
"Swedish": "sv",
"Swahili": "sw",
"Tamil": "ta",
"Thai": "th",
"Tagalog": "tl",
"Tswana": "tn",
"Turkish": "tr",
"Ukrainian": "uk",
"Urdu": "ur",
"Uzbek": "uz",
"Vietnamese": "vi",
"Welsh": "cy",
"Wolof": "wo",
"Xhosa": "xh",
"Yiddish": "yi",
"Yoruba": "yo",
"Zulu": "zu",
}
ocr_id = {
"":"",
"Afrikaans": "af",
"Albanian": "sq",
"Arabic": "ar",
"Azerbaijani": "az",
"Belarusian": "be",
"Bulgarian": "bg",
"Bengali": "bn",
"Bosnian": "bs",
"Chinese (simplified)": "ch_sim",
"Chinese (traditional)": "ch_tra",
"Croatian": "hr",
"Czech": "cs",
"Danish": "da",
"Dutch": "nl",
"English": "en",
"Estonian": "et",
"French": "fr",
"German": "de",
"Irish": "ga",
"Hindi": "hi",
"Hungarian": "hu",
"Indonesian": "id",
"Icelandic": "is",
"Italian": "it",
"Japanese": "ja",
"Kannada": "kn",
"Korean": "ko",
"Lithuanian": "lt",
"Latvian": "lv",
"Mongolian": "mn",
"Marathi": "mr",
"Malay": "ms",
"Nepali": "ne",
"Norwegian": "no",
"Occitan": "oc",
"Polish": "pl",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
"Serbian (cyrillic)": "rs_cyrillic",
"Serbian (latin)": "rs_latin",
"Slovak": "sk",
"Slovenian": "sl",
"Spanish": "es",
"Swedish": "sv",
"Swahili": "sw",
"Tamil": "ta",
"Thai": "th",
"Tagalog": "tl",
"Turkish": "tr",
"Ukrainian": "uk",
"Urdu": "ur",
"Uzbek": "uz",
"Vietnamese": "vi",
"Welsh": "cy",
"Zulu": "zu",
}
def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac):
im = cv2.imread(img)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
for bound in bounds:
if bound[2]>=(ocr_sens):
p0, p1, p2, p3 = bound[0]
x = int(p0[0])
y = int(p0[1])
w = int(p2[0]) - int(x)
h = int(p2[1]) - int(y)
kernel = np.ones((3, 3), np.uint8)
im[y:y+h, x:x+w] = cv2.dilate(im[y:y+h, x:x+w], kernel, iterations=3)
im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0)
else:
pass
im = Image.fromarray(im)
for bound in bounds:
if bound[2]>=(ocr_sens):
p0, p1, p2, p3 = bound[0]
x = int(p0[0])
y = int(p0[1])
w = int(p2[0]) - int(x)
h = int(p2[1]) - int(y)
draw = ImageDraw.Draw(im)
text = this(bound[1],target_lang,trans_lang)
font_size=int(int(h)*font_fac)
font = ImageFont.truetype("./fonts/unifont-15.0.01.ttf", int(font_size))
draw.text((x, y),text, font = font, fill=(0,0,0))
else:
pass
return im
def draw_boxes(image, bounds, ocr_sens,width=1):
draw = ImageDraw.Draw(image)
for bound in bounds:
if bound[2]>=(ocr_sens):
color = "blue"
else:
color = "red"
p0, p1, p2, p3 = bound[0]
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
return image
def detect(img, target_lang,trans_lang,ocr_sens,font_fac,target_lang2=None):
if target_lang2 != None and target_lang2 != "":
lang=f"{lang_id[target_lang]}"
lang2=f"{lang_id[target_lang2]}"
lang=[lang,lang2]
else:
lang=[f"{ocr_id[target_lang]}"]
pass
img = Image.open(img)
img.thumbnail((1000,1000), Image.Resampling.LANCZOS)
path = f"/tmp/{uuid.uuid4()}.jpg"
img.save(path)
img1 = np.array(img)
reader = easyocr.Reader(lang)
bounds = reader.readtext(img1)
im = PIL.Image.open(path)
im_out=draw_boxes(im, bounds,ocr_sens)
blr_out=blur_im(path,bounds,target_lang,trans_lang,ocr_sens,font_fac)
return im_out,blr_out,pd.DataFrame(bounds),pd.DataFrame(bounds).iloc[:,1:]
with gr.Blocks() as robot:
gr.Markdown("""<h1><center>Translate Image to Image</center></h1><h4><center>EasyOCR and facebook/m2m100_1.2B</center></h4><h7><center>*translation may not be accurate</center></h7>""")
with gr.Accordion(label="Description",open=False):
with gr.Row():
gr.Markdown("""<p> Drop your image in the "Image to Translate" Box<br>
Select the Language to Detect in the Image<br>
Select the Language to Translate to<br>
Click "Go" Button </p>""")
gr.Markdown("""<p> Translation Model: <a href="https://huggingface.co/facebook/m2m100_1.2B">facebook/m2m100_1.2B</a><br>
OCR: <a href="https://www.jaided.ai/easyocr">easyocr</a><br>
Influence by:<br>
<a href="https://huggingface.co/spaces/venz/AW-05-GR-NLP-Image2Text-Multilingual-OCR">venz/AW-05-GR-NLP-Image2Text-Multilingual-OCR</a><br>
<a href="https://huggingface.co/spaces/Iker/Translate-100-languages">Iker/Translate-100-languages</a><br>
</p>""")
with gr.Row():
with gr.Column():
im=gr.Image(label="Image to Translate",type="filepath")
with gr.Column():
with gr.Group():
with gr.Row():
with gr.Column():
target_lang = gr.Dropdown(label="Detect language:", choices=list(ocr_id.keys()),value="English")
trans_lang = gr.Dropdown(label="Translate to:", choices=list(lang_id.keys()),value="Chinese")
with gr.Column():
ocr_sens=gr.Slider(0.1, 1, step=0.05,value=0.25,label="Detect Min Confidence")
font_fac=gr.Slider(0.1, 1, step =0.1,value=0.4,label="Font Scale")
ocr_space=gr.Slider(1,10, step=1,value=5,label="Future Function")
go_btn=gr.Button("Go")
with gr.Row():
with gr.Column():
out_im=gr.Image()
with gr.Column():
trans_im=gr.Image()
with gr.Row():
out_txt=gr.Textbox(lines=8)
data_f=gr.Dataframe()
go_btn.click(detect,[im,target_lang,trans_lang,ocr_sens,font_fac],[out_im,trans_im,out_txt,data_f])
#go_btn.click(detect,[im,target_lang,target_lang2],[out_im,trans_im,out_txt,data_f])
robot.queue(concurrency_count=10).launch()