Omnibus commited on
Commit
0840e72
Β·
1 Parent(s): 6cc97b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -6
app.py CHANGED
@@ -180,10 +180,15 @@ ocr_id = {
180
  }
181
 
182
 
183
- def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac):
184
  im = cv2.imread(img)
185
  im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
186
-
 
 
 
 
 
187
  for bound in bounds:
188
  if bound[2]>=(ocr_sens):
189
  p0, p1, p2, p3 = bound[0]
@@ -192,7 +197,12 @@ def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac):
192
  w = int(p2[0]) - int(x)
193
  h = int(p2[1]) - int(y)
194
  kernel = np.ones((3, 3), np.uint8)
195
- im[y:y+h, x:x+w] = cv2.dilate(im[y:y+h, x:x+w], kernel, iterations=3)
 
 
 
 
 
196
  im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0)
197
  else:
198
  pass
@@ -208,7 +218,7 @@ def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac):
208
  text = this(bound[1],target_lang,trans_lang)
209
  font_size=int(int(h)*font_fac)
210
  font = ImageFont.truetype("./fonts/unifont-15.0.01.ttf", int(font_size))
211
- draw.text((x, y),text, font = font, fill=(0,0,0))
212
  else:
213
  pass
214
  return im
@@ -274,7 +284,9 @@ with gr.Blocks() as robot:
274
  with gr.Column():
275
  ocr_sens=gr.Slider(0.1, 1, step=0.05,value=0.25,label="Detect Min Confidence")
276
  font_fac=gr.Slider(0.1, 1, step =0.1,value=0.4,label="Font Scale")
277
- ocr_space=gr.Slider(1,10, step=1,value=5,label="Future Function")
 
 
278
  go_btn=gr.Button("Go")
279
  with gr.Row():
280
  with gr.Column():
@@ -286,6 +298,6 @@ with gr.Blocks() as robot:
286
  out_txt=gr.Textbox(lines=8)
287
  data_f=gr.Dataframe()
288
 
289
- go_btn.click(detect,[im,target_lang,trans_lang,ocr_sens,font_fac],[out_im,trans_im,out_txt,data_f])
290
  #go_btn.click(detect,[im,target_lang,target_lang2],[out_im,trans_im,out_txt,data_f])
291
  robot.queue(concurrency_count=10).launch()
 
180
  }
181
 
182
 
183
+ def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac,t_color):
184
  im = cv2.imread(img)
185
  im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
186
+ if t_color == "Black":
187
+ t_fill = (0,0,0)
188
+ pass
189
+ elif t_color == "White":
190
+ t_fill = (255,255,255)
191
+ pass
192
  for bound in bounds:
193
  if bound[2]>=(ocr_sens):
194
  p0, p1, p2, p3 = bound[0]
 
197
  w = int(p2[0]) - int(x)
198
  h = int(p2[1]) - int(y)
199
  kernel = np.ones((3, 3), np.uint8)
200
+ if t_color=="Black":
201
+ im[y:y+h, x:x+w] = cv2.dilate(im[y:y+h, x:x+w], kernel, iterations=3)
202
+ pass
203
+ elif t_color=="White":
204
+ im[y:y+h, x:x+w] = cv2.erode(im[y:y+h, x:x+w], kernel, iterations=3)
205
+ pass
206
  im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0)
207
  else:
208
  pass
 
218
  text = this(bound[1],target_lang,trans_lang)
219
  font_size=int(int(h)*font_fac)
220
  font = ImageFont.truetype("./fonts/unifont-15.0.01.ttf", int(font_size))
221
+ draw.text((x, y),text, font = font, fill=t_fill)
222
  else:
223
  pass
224
  return im
 
284
  with gr.Column():
285
  ocr_sens=gr.Slider(0.1, 1, step=0.05,value=0.25,label="Detect Min Confidence")
286
  font_fac=gr.Slider(0.1, 1, step =0.1,value=0.4,label="Font Scale")
287
+ ocr_space=gr.Slider(1,10, step=1,value=5,label="Future Function")
288
+ text_color=gr.Radio(["Black", "White"])
289
+
290
  go_btn=gr.Button("Go")
291
  with gr.Row():
292
  with gr.Column():
 
298
  out_txt=gr.Textbox(lines=8)
299
  data_f=gr.Dataframe()
300
 
301
+ go_btn.click(detect,[im,target_lang,trans_lang,ocr_sens,font_fac,text_color],[out_im,trans_im,out_txt,data_f])
302
  #go_btn.click(detect,[im,target_lang,target_lang2],[out_im,trans_im,out_txt,data_f])
303
  robot.queue(concurrency_count=10).launch()