Spaces:
Sleeping
Sleeping
File size: 6,928 Bytes
1f72938 9312707 e029c8d 9059886 841bad9 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 e029c8d 9312707 1f72938 9312707 1f72938 9312707 1f72938 e029c8d 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9059886 841bad9 9059886 841bad9 e029c8d 1f72938 841bad9 1f72938 841bad9 4f14bd8 841bad9 a010e64 841bad9 a010e64 841bad9 e4befd4 841bad9 9059886 841bad9 9059886 1f72938 e029c8d 1f72938 e029c8d 9312707 1f72938 e029c8d 1f72938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import streamlit as st
import similarity_check as sc
import cv2
from PIL import Image
import numpy as np
import demo
import streamlit as st
import request_json.sbt_request_generator as sbt
import check_hkid_validity as chv
import search_engine as se
import socket
import pickle
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase, RTCConfiguration, WebRtcMode
class WebcamTransformer(VideoTransformerBase):
def __init__(self):
self.frame_count = 0
def transform(self, frame):
self.frame_count += 1
return frame
def main():
# st.title("SBT Web Application")
# today's date = get_today_date
# global data
html_temp = """
<body style="background-color:red;">
<div style="background-color:teal ;padding:10px">
<h2 style="color:white;text-align:center;">SBT Web Application</h2>
</div>
</body>
"""
st.markdown(html_temp, unsafe_allow_html=True)
if 'hkid_image_validity' not in st.session_state:
st.session_state.hkid_image_validity = False
if 'data' not in st.session_state:
st.session_state['data'] = {}
st.header("I. Similarity Check")
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg', 'pdf'], accept_multiple_files=True)
if len(image_file) == 1:
image1 = Image.open(image_file[0])
st.text("HKID card")
st.image(image1)
image1.save('image/hkid.jpg', 'JPEG')
if chv.check_hkid('image/hkid.jpg'):
st.text("Valid HKID card.")
st.session_state.hkid_image_validity = True
else:
st.text("Invalid HKID card. Please upload again!")
st.session_state.hkid_image_validity = False
elif len(image_file) == 2:
image1 = Image.open(image_file[0])
st.text("HKID card")
st.image(image1)
image2 = Image.open(image_file[1])
# image2 = image_file[1]
# image2.save('image/hkid.jpg', 'JPEG')
# file_name = image_file[1].name
st.text("Bank statement")
st.image(image2)
print(f"the id is: {st.session_state.hkid_image_validity}")
# if image_file2 is not None:
# image2 = Image.open(image_file)
# st.text("Bank statement")
# st.image(image2)
# path1 = 'IMG_4495.jpg'
# path2 = 'hangseng_page-0001.jpg'
# image1 = save_image(image1)
# image2 = save_image(image2)
data = {}
if st.button("Recognise"):
with st.spinner('Wait for it...'):
# global data
data = sc.get_data(image1, image2)
# se.get_data_link(data['chi_name_id'], data["name_on_id"], data["address"])
if 'data' in st.session_state:
st.session_state['data'] = data
st.success('Done!')
score = int(st.session_state['data']['similarity_score'])
st.text(f'score: {score}')
if (score>85):
st.text(f'matched')
else:
st.text(f'unmatched')
data = st.session_state['data']
st.header("IIa. HKID Data Extraction")
st.text(f'English Name: {data["name_on_id"]}') # name is without space
st.text(f'Chinese Name: {data["chi_name_id"]}') # name is without space
st.text(f'HKID: {data["hkid"]} and validity: {data["validity"]}')
st.text(f'Date of issue: {data["issue_date"]}')
st.header("IIb. Bank Statement Data Extraction")
st.text(f'Name: {data["nameStatement"]}')
st.text(f'Address: {data["address"]}')
st.text(f'Bank: {data["bank"]}')
st.text(f'Date: {data["statementDate"]}')
st.text(f'Asset: {data["totalAsset"]} hkd')
st.text(f'Liabilities: {data["totalLiability"]} hkd')
if 'data' in st.session_state:
tempout = st.session_state['data']
print(f'hello: {tempout}')
st.header("II. Facial Recognition")
run = st.checkbox('Run')
# webrtc_streamer(key="example")
# 1. Web Rtc
# webrtc_streamer(key="jhv", video_frame_callback=video_frame_callback)
# # init the camera
face_locations = []
# face_encodings = []
face_names = []
process_this_frame = True
score = []
faces = 0
FRAME_WINDOW = st.image([])
# server_ip = "127.0.0.1"
# server_port = 6666
# camera = cv2.VideoCapture(1)
# s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# s.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 1000000)
while run:
rtc_configuration = RTCConfiguration({"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]})
# Capture frame-by-frame
# Grab a single frame of video
# ret, frame = camera.read()
# Initialize the WebRTC streaming
webrtc_ctx = webrtc_streamer(
key="face_rec",
mode=WebRtcMode.SENDRECV,
rtc_configuration=rtc_configuration,
video_transformer_factory=WebcamTransformer,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
if webrtc_ctx.video_transformer:
st.header("Webcam Preview")
frame = webrtc_ctx.video_transformer.frame
result, process_this_frame, face_locations, faces, face_names, score = demo.process_frame(frame, process_this_frame, face_locations, faces, face_names, score)
st.video(result)
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# FRAME_WINDOW.image(frame)
# if ret is not None:
# ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY),30])
# x_as_bytes = pickle.dumps(buffer)
# s.sendto((x_as_bytes),(server_ip, server_port))
# camera.release()
# if ret:
# # ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY)])
# # result, process_this_frame, face_locations, faces, face_names, score = demo.process_frame(frame, process_this_frame, face_locations, faces, face_names, score)
# # Display the resulting image
# FRAME_WINDOW.image(frame)
# else:
# print("there is no frame detected")
# continue
# print(score)
# if len(score) > 20:
# avg_score = sum(score) / len(score)
# st.write(avg_score)
# # st.write(f'{demo.convert_distance_to_percentage(avg_score, 0.45)}')
# # camera.release()
# run = not run
# st.session_state['data']['avg_score'] = str(avg_score)
## unrelated
if st.button("Confirm"):
st.experimental_set_query_params(
verified=True,
)
with st.spinner('Sending data...'):
print(st.session_state['data'])
sbt.split_data(st.session_state['data'])
st.success('Done!')
if __name__ == '__main__':
main()
|