import streamlit as st
import similarity_check as sc
import cv2
from PIL import Image
import numpy as np
import tempfile
from streamlit_webrtc import VideoTransformerBase, webrtc_streamer
import demo
import time
import streamlit as st
import requests
import json
import request_json.sbt_request_generator as sbt
import pathlib
import os
import check_hkid_validity as chv


def main():

    # st.title("SBT Web Application")
    # today's date = get_today_date

    # global data
    html_temp = """
        <body style="background-color:red;">
        <div style="background-color:teal ;padding:10px">
        <h2 style="color:white;text-align:center;">SBT Web Application</h2>
        </div>
        </body>
        """
    st.markdown(html_temp, unsafe_allow_html=True)
    
    if 'hkid_image_validity' not in st.session_state:
        st.session_state.hkid_image_validity = False

    if 'data' not in st.session_state:
        st.session_state['data'] = {}

    st.header("I. Similarity Check")
    image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg', 'pdf'], accept_multiple_files=True)
    if len(image_file) == 1:
        image1 = Image.open(image_file[0])
        st.text("HKID card")
        st.image(image1)
        image1.save('image/hkid.jpg', 'JPEG')
        if chv.check_hkid('image/hkid.jpg'):
            st.text("Valid HKID card.")
            st.session_state.hkid_image_validity = True
        else:
            st.text("Invalid HKID card. Please upload again!")
            st.session_state.hkid_image_validity = False
    elif len(image_file) == 2:
        image1 = Image.open(image_file[0])
        st.text("HKID card")
        st.image(image1)
        image2 = Image.open(image_file[1])
        # image2 = image_file[1]
        # image2.save('image/hkid.jpg', 'JPEG')
        # file_name = image_file[1].name
        st.text("Bank statement")
        st.image(image2)

    print(f"the id is: {st.session_state.hkid_image_validity}")
    # if image_file2 is not None:
    #     image2 = Image.open(image_file)
    #     st.text("Bank statement")
    #     st.image(image2)

    # path1 = 'IMG_4495.jpg'
    # path2 = 'hangseng_page-0001.jpg'    
    # image1 = save_image(image1)
    # image2 = save_image(image2)

    data = {}
    if st.button("Recognise"):
        with st.spinner('Wait for it...'):
            # global data
            data = sc.get_data(image1, image2)
            # data = ed.get_info_from_bank('hsbc_one_account.pdf')
            # with open('data1.txt', 'w') as f:
            #     f.write(json.dumps(data))
            # data.update(sc.get_data(image1, image2, file_name))
            # print(f'data inside {data}')
            # sbt.split_data(data)
        if 'data' in st.session_state:
            st.session_state['data'] = data
        st.success('Done!')
        # if "similarity_score" not in data.keys():
        #     data["similarity_score"] = "0"
        score = int(st.session_state['data']['similarity_score'])
        # score = int(data["similarity_score"])
        #print(score)
        st.text(f'score: {score}')
        if (score>85):
            st.text(f'matched')
        else:
            st.text(f'unmatched')
        

        data = st.session_state['data']
        st.header("IIa. HKID Data Extraction")
        st.text(f'Name: {data["name_on_id"]}') # name is without space
        st.text(f'HKID: {data["hkid"]} and validity: {data["validity"]}')
        st.text(f'Date of issue: {data["issue_date"]}')
    
        st.header("IIb. Bank Statement Data Extraction")
        # st.write('------------From bank statement------------')
        st.text(f'Name: {data["nameStatement"]}')
        st.text(f'Address: {data["address"]}')
        st.text(f'Bank: {data["bank"]}')
        st.text(f'Date: {data["statementDate"]}')
        st.text(f'Asset: {data["totalAsset"]} hkd')
        st.text(f'Liabilities: {data["totalLiability"]} hkd')
        # result_img= detect_faces(our_image)
        # st.image(result_img)
    # print(f'data outside 1 {data}')

    if 'data' in st.session_state:
        tempout = st.session_state['data']
        print(f'hello: {tempout}')
    

    st.header("II. Facial Recognition")
    run = st.checkbox('Run')

    # webrtc_streamer(key="example")
    # 1. Web Rtc
    # webrtc_streamer(key="jhv", video_frame_callback=video_frame_callback)


    # # init the camera
    face_locations = []
    # face_encodings = []
    face_names = []
    process_this_frame = True

    score = []

    faces = 0

    FRAME_WINDOW = st.image([])
    camera = cv2.VideoCapture(0)

    while run:

        # Capture frame-by-frame
        # Grab a single frame of video
        ret, frame = camera.read()
        
        result, process_this_frame, face_locations, faces, face_names, score = demo.process_frame(frame, process_this_frame, face_locations, faces, face_names, score)
        # Display the resulting image
        FRAME_WINDOW.image(result)

        print(score)
        if len(score) > 20:
            avg_score =  sum(score) / len(score)
            st.write(avg_score)
            # st.write(f'{demo.convert_distance_to_percentage(avg_score, 0.45)}')
            camera.release()
            run = not run
            st.session_state['data']['avg_score'] = str(avg_score)
            # with open('data1.txt', 'r') as f:
            #     if f is not None:
            #         data_raw = f.read()
            #         data = json.loads(data_raw)
            #         data['avg_score'] = str(avg_score)
            #     else:
            #         data = {}

            
            # with open('data1.txt', 'w') as f:
            #         f.write(json.dumps(data))
                

        # update_text(f'{demo.convert_distance_to_percentage(score, 0.45)}')
    else:
        st.write('Stopped')
    
    # print(f'the data is {data}')

    # st.header("IIIa. HKID Data Extraction")
    # st.text(f'Name: {data["name_on_id"]}') # name is without space
    # st.text(f'HKID: {data["hkid"]} and validity: {data["validity"]}')
    # st.text(f'Date of issue: {data["issue_date"]}')

    # st.header("IIIb. Bank Statement Data Extraction")
    # # st.write('------------From bank statement------------')
    # st.text(f'Name: {data["nameStatement"]}')
    # st.text(f'Address: {data["address"]}')
    # st.text(f'Bank: {data["bank"]}')
    # st.text(f'Date: {data["date"]}')
    # st.text(f'Asset: {data["asset"]} hkd')
    # st.text(f'Liabilities: {data["liabilities"]} hkd')
    
    # print(f'data outside 2 {data}')
    if st.button("Confirm"):
        # print(f'data outside 3 {data}')
        with st.spinner('Sending data...'):
            sbt.split_data(st.session_state['data'])
        st.success('Done!')

if __name__ == '__main__':
    main()



    # def save_image(image):
#     try:
#         temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
#         Image.save(temp_file.name)
#         return temp_file.name
#     except IOError:
#         print("Unable to save image to temporary file")
#         return None

    # json_file = 'request json\request_legalDocument.json'
    # file = open(json_file, 'r')
    # data = json.load(file)
    # file.close()
    # # Update data
    # data.update(new_data)
    # file = open(json_file, 'w')
    # for item in data['request']['body']['formdata']:
    #     if item["key"] == "requestId":
    #         item["value"] = ""
    #     elif item["key"] == "userId":
    #         item["value"] = generate_token_id(2048)
    #     elif item["key"] == "endpoint":
    #         item["value"] = ""
    #     elif item["key"] == "apiType":
    #         item["value"] = ""
    #     elif item["key"] == "docType":
    #         item["value"] = "HKID"
    #     elif item["key"] == "nameDoc":
    #         item["value"] = new_data["name_on_id"]
    #     elif item["key"] == "docID":
    #         item["value"] = new_data["name_on_id"]
    #     elif item["key"] == "docValidity":
    #         item["value"] = new_data["validity"]
    #     elif item["key"] == "dateOfIssue":
    #         item["value"] = new_data["date_issue"]
    #     elif item["key"] == "matchingScore":
    #         item["value"] = new_data["similarity_score"]
    # json.dump(data, file)
    # file.close()