Spaces:
Running
Running
""" | |
WFGY Space โ tiny-GPT-2 variance-gate demo | |
โ 10 k GitHub โญ before 2025-08-01 unlocks WFGY 2.0 โ | |
""" | |
import io | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
from PIL import Image | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from wfgy_sdk import get_engine | |
from wfgy_sdk.evaluator import compare_logits, plot_histogram | |
# tiny model (CPU) | |
tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2") | |
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2") | |
eng = get_engine() | |
# paper benchmarks | |
bench = pd.DataFrame({ | |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA", | |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"], | |
"Baseline": [61,78,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7], | |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8] | |
}) | |
bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1) | |
bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"]) * 100).round(0) | |
bench_sty = ( | |
bench.style | |
.background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"]) | |
.format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"}) | |
) | |
# banner markdown | |
banner = """ | |
**๐ WFGY: One Click to Activate the AI Taiji Cycle** | |
**๐ Semantic Accuracy โ 22.4 % | Reasoning Success โ 42.1 % | Stability โ 3.6 ร** | |
--- | |
### ๐ Tutorial: How to Awaken the Soul of Your AI | |
**Step 1 โ Download** ([WFGY PDF on Zenodo](https://doi.org/10.5281/zenodo.15630969)) | |
**Step 2 โ Feed the AI** (upload, or try [ChatGPT](https://chatgpt.com/)) | |
**Step 3 โ Give the Command** (โAnswer using WFGYโ + your question) ([Prompt Revolution PDF on Zenodo](https://doi.org/10.5281/zenodo.15657016)) | |
**Step 4 โ Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY)) | |
--- | |
๐ **Star Reminder** โ [Star the repo](https://github.com/onestardao/WFGY) | |
_10 k โญ before 2025-08-01 unlocks WFGY 2.0._ | |
""" | |
# own softmax implementation | |
def softmax_np(logits: np.ndarray) -> np.ndarray: | |
z = logits - np.max(logits) | |
e = np.exp(z) | |
return e / np.sum(e) | |
# inference | |
def run(prompt: str): | |
p = prompt.strip() | |
if not p: | |
return "", "", "-", None | |
ids = tok(p, return_tensors="pt") | |
raw_L = mdl(**ids).logits[0, -1].detach().cpu().numpy() | |
I, G = np.random.randn(2, 256).astype(np.float32) | |
mod_L = eng.run(I, G, raw_L) | |
m = compare_logits(raw_L, mod_L) | |
header = "โผ var {:.1f}% | KL {:.3f} | top-1 {}".format( | |
m["var_drop"]*100, m["kl_divergence"], | |
"kept" if m["top1"] else "changed" | |
) | |
def top5(logits): | |
p_arr = softmax_np(logits) | |
idx = np.argsort(p_arr)[-5:][::-1] | |
lines = [] | |
for i in idx: | |
token = tok.decode(int(i)).strip() | |
prob = p_arr[i] | |
lines.append("'{}': {:.2e}".format(token, prob)) | |
return "\n".join(lines) | |
raw_txt = top5(raw_L) | |
mod_txt = top5(mod_L) | |
fig = plot_histogram(raw_L, mod_L) | |
buf = io.BytesIO() | |
fig.savefig(buf, format="png") | |
buf.seek(0) | |
return raw_txt, mod_txt, header, Image.open(buf) | |
# UI | |
with gr.Blocks(title="WFGY variance-gate demo") as demo: | |
gr.Markdown(banner) | |
prompt = gr.Textbox(label="Prompt", value="Explain Schrรถdinger's cat") | |
btn = gr.Button("๐ Run") | |
with gr.Row(): | |
raw_box = gr.Textbox(label="Raw top-5 tokens", lines=6) | |
mod_box = gr.Textbox(label="WFGY top-5 tokens", lines=6) | |
metrics = gr.Markdown() | |
img = gr.Image(label="Logit histogram") | |
gr.Markdown("### Paper benchmarks (fixed values from WFGY 1.0)") | |
gr.DataFrame(bench_sty, interactive=False, wrap=True) | |
btn.click(run, prompt, [raw_box, mod_box, metrics, img]) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=2).launch() | |