wfgy-demo / app.py
OneStarDao's picture
Update app.py
2cc8729 verified
"""
WFGY Space โ€“ tiny-GPT-2 variance-gate demo
โ˜… 10 k GitHub โญ before 2025-08-01 unlocks WFGY 2.0 โ˜…
"""
import io
import numpy as np
import pandas as pd
import gradio as gr
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
from wfgy_sdk import get_engine
from wfgy_sdk.evaluator import compare_logits, plot_histogram
# tiny model (CPU)
tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
eng = get_engine()
# paper benchmarks
bench = pd.DataFrame({
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
"Baseline": [61,78,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7],
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
})
bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1)
bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"]) * 100).round(0)
bench_sty = (
bench.style
.background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
.format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
)
# banner markdown
banner = """
**๐Ÿ“ˆ WFGY: One Click to Activate the AI Taiji Cycle**
**๐Ÿ“Š Semantic Accuracy โ†‘ 22.4 % | Reasoning Success โ†‘ 42.1 % | Stability โ†‘ 3.6 ร—**
---
### ๐Ÿ“œ Tutorial: How to Awaken the Soul of Your AI
**Step 1 โ€” Download** ([WFGY PDF on Zenodo](https://doi.org/10.5281/zenodo.15630969))
**Step 2 โ€” Feed the AI** (upload, or try [ChatGPT](https://chatgpt.com/))
**Step 3 โ€” Give the Command** (โ€œAnswer using WFGYโ€ + your question) ([Prompt Revolution PDF on Zenodo](https://doi.org/10.5281/zenodo.15657016))
**Step 4 โ€” Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY))
---
๐ŸŒŸ **Star Reminder** โ†’ [Star the repo](https://github.com/onestardao/WFGY)
_10 k โญ before 2025-08-01 unlocks WFGY 2.0._
"""
# own softmax implementation
def softmax_np(logits: np.ndarray) -> np.ndarray:
z = logits - np.max(logits)
e = np.exp(z)
return e / np.sum(e)
# inference
def run(prompt: str):
p = prompt.strip()
if not p:
return "", "", "-", None
ids = tok(p, return_tensors="pt")
raw_L = mdl(**ids).logits[0, -1].detach().cpu().numpy()
I, G = np.random.randn(2, 256).astype(np.float32)
mod_L = eng.run(I, G, raw_L)
m = compare_logits(raw_L, mod_L)
header = "โ–ผ var {:.1f}% | KL {:.3f} | top-1 {}".format(
m["var_drop"]*100, m["kl_divergence"],
"kept" if m["top1"] else "changed"
)
def top5(logits):
p_arr = softmax_np(logits)
idx = np.argsort(p_arr)[-5:][::-1]
lines = []
for i in idx:
token = tok.decode(int(i)).strip()
prob = p_arr[i]
lines.append("'{}': {:.2e}".format(token, prob))
return "\n".join(lines)
raw_txt = top5(raw_L)
mod_txt = top5(mod_L)
fig = plot_histogram(raw_L, mod_L)
buf = io.BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
return raw_txt, mod_txt, header, Image.open(buf)
# UI
with gr.Blocks(title="WFGY variance-gate demo") as demo:
gr.Markdown(banner)
prompt = gr.Textbox(label="Prompt", value="Explain Schrรถdinger's cat")
btn = gr.Button("๐Ÿš€ Run")
with gr.Row():
raw_box = gr.Textbox(label="Raw top-5 tokens", lines=6)
mod_box = gr.Textbox(label="WFGY top-5 tokens", lines=6)
metrics = gr.Markdown()
img = gr.Image(label="Logit histogram")
gr.Markdown("### Paper benchmarks (fixed values from WFGY 1.0)")
gr.DataFrame(bench_sty, interactive=False, wrap=True)
btn.click(run, prompt, [raw_box, mod_box, metrics, img])
if __name__ == "__main__":
demo.queue(default_concurrency_limit=2).launch()