Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,66 @@
|
|
1 |
import io, traceback, numpy as np, gradio as gr, matplotlib
|
2 |
matplotlib.use("Agg")
|
3 |
-
|
4 |
from PIL import Image
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
from wfgy_sdk import get_engine
|
7 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
|
|
8 |
|
9 |
MODEL = "sshleifer/tiny-gpt2"
|
10 |
-
tok
|
11 |
-
mdl
|
12 |
-
eng
|
13 |
-
|
14 |
|
15 |
def run(prompt: str):
|
16 |
prompt = prompt.strip()
|
17 |
if not prompt:
|
18 |
-
return "", "", "
|
19 |
try:
|
20 |
-
ids
|
21 |
-
|
22 |
-
G
|
23 |
-
I
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
img = Image.open(buf)
|
33 |
|
34 |
-
raw_txt = prompt + tok.decode(int(
|
35 |
-
mod_txt = prompt + tok.decode(int(
|
36 |
-
return raw_txt, mod_txt, headline, img
|
37 |
except Exception:
|
38 |
tb = traceback.format_exc()
|
39 |
-
return "runtime error", tb, "runtime error", None
|
40 |
-
|
41 |
|
42 |
with gr.Blocks(title="WFGY variance gate") as demo:
|
43 |
gr.Markdown("# 🧠 WFGY simulation demo")
|
44 |
prompt = gr.Textbox(label="Prompt", value="Explain Schrödinger's cat")
|
45 |
-
btn
|
46 |
|
47 |
with gr.Row():
|
48 |
raw_box = gr.Textbox(label="Raw GPT-2")
|
49 |
mod_box = gr.Textbox(label="After WFGY")
|
|
|
50 |
headline = gr.Markdown()
|
51 |
-
|
|
|
52 |
|
53 |
-
btn.click(run, prompt,
|
|
|
54 |
|
55 |
-
gr.Markdown("---\n
|
|
|
56 |
|
57 |
if __name__ == "__main__":
|
58 |
demo.queue().launch()
|
|
|
1 |
import io, traceback, numpy as np, gradio as gr, matplotlib
|
2 |
matplotlib.use("Agg")
|
|
|
3 |
from PIL import Image
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from wfgy_sdk import get_engine
|
6 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
7 |
+
from tabulate import tabulate
|
8 |
|
9 |
MODEL = "sshleifer/tiny-gpt2"
|
10 |
+
tok = AutoTokenizer.from_pretrained(MODEL)
|
11 |
+
mdl = AutoModelForCausalLM.from_pretrained(MODEL)
|
12 |
+
eng = get_engine()
|
|
|
13 |
|
14 |
def run(prompt: str):
|
15 |
prompt = prompt.strip()
|
16 |
if not prompt:
|
17 |
+
return "", "", "", None, None
|
18 |
try:
|
19 |
+
ids = tok(prompt, return_tensors="pt").input_ids
|
20 |
+
rawL = mdl(ids).logits[0, -1].detach().cpu().numpy()
|
21 |
+
G = np.random.randn(256).astype(np.float32)
|
22 |
+
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
23 |
+
modL = eng.run(I, G, rawL)
|
24 |
+
|
25 |
+
m = compare_logits(rawL, modL)
|
26 |
+
tbl = tabulate(
|
27 |
+
[[f"{m['std_ratio']:.3f}",
|
28 |
+
f"{m['var_drop']*100:4.1f} %",
|
29 |
+
f"{m['kl']:.3f}",
|
30 |
+
"✔" if m['top1'] else "✘"]],
|
31 |
+
headers=["std_ratio", "▼ var", "KL", "top-1"],
|
32 |
+
tablefmt="github")
|
33 |
+
headline = f"▼ var {m['var_drop']*100:4.1f} % | KL {m['kl']:.3f}"
|
34 |
+
|
35 |
+
fig = plot_histogram(rawL, modL)
|
36 |
+
buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
|
37 |
img = Image.open(buf)
|
38 |
|
39 |
+
raw_txt = prompt + tok.decode(int(rawL.argmax()))
|
40 |
+
mod_txt = prompt + tok.decode(int(modL.argmax()))
|
41 |
+
return raw_txt, mod_txt, headline, tbl, img
|
42 |
except Exception:
|
43 |
tb = traceback.format_exc()
|
44 |
+
return "runtime error", tb, "runtime error", "", None
|
|
|
45 |
|
46 |
with gr.Blocks(title="WFGY variance gate") as demo:
|
47 |
gr.Markdown("# 🧠 WFGY simulation demo")
|
48 |
prompt = gr.Textbox(label="Prompt", value="Explain Schrödinger's cat")
|
49 |
+
btn = gr.Button("🚀 Run")
|
50 |
|
51 |
with gr.Row():
|
52 |
raw_box = gr.Textbox(label="Raw GPT-2")
|
53 |
mod_box = gr.Textbox(label="After WFGY")
|
54 |
+
|
55 |
headline = gr.Markdown()
|
56 |
+
metrics = gr.Markdown() # ← 新增數值表
|
57 |
+
img = gr.Image(label="Logit histogram", type="pil")
|
58 |
|
59 |
+
btn.click(run, prompt,
|
60 |
+
[raw_box, mod_box, headline, metrics, img])
|
61 |
|
62 |
+
gr.Markdown("---\n"
|
63 |
+
"### ⭐ 10 000 stars → unlock **WFGY 2.0** by 2025-08-01")
|
64 |
|
65 |
if __name__ == "__main__":
|
66 |
demo.queue().launch()
|