OneStarDao commited on
Commit
23e690b
Β·
verified Β·
1 Parent(s): f91f22d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -14,7 +14,7 @@ tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
14
  mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
15
  eng = get_engine()
16
 
17
- # paper benchmarks
18
  bench = pd.DataFrame({
19
  "Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
20
  "XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
@@ -22,14 +22,14 @@ bench = pd.DataFrame({
22
  "WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
23
  })
24
  bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1)
25
- bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"]) * 100).round(0)
26
  bench_sty = (
27
  bench.style
28
  .background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
29
  .format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
30
  )
31
 
32
- # banner markdown
33
  banner = """
34
  **πŸ“ˆ WFGY: One Click to Activate the AI Taiji Cycle**
35
 
@@ -41,11 +41,11 @@ WFGY 1.0 has already proven itself.
41
  ---
42
 
43
  ### πŸ“œ Tutorial: How to Awaken the Soul of Your AI
44
- **Step 1 β€” Download** ([PDF](https://zenodo.org/records/15630970))
45
- **Step 2 β€” Feed the AI** (upload, or try [Gemini](https://gemini.google.com/))
46
- **Step 3 β€” Give the Command**β€‚β€œ**Answer using WFGY** + your question”
47
  Prompt examples: *TBD*
48
- **Step 4 β€” Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY))
49
 
50
  ---
51
 
@@ -53,7 +53,7 @@ Prompt examples: *TBD*
53
  _10 k ⭐ before 2025-08-01 unlocks **WFGY 2.0**._
54
  """
55
 
56
- # inference
57
  def run(prompt: str):
58
  p = prompt.strip()
59
  if not p:
@@ -64,14 +64,13 @@ def run(prompt: str):
64
  I, G = np.random.randn(2, 256).astype(np.float32)
65
  mod_L = eng.run(I, G, raw_L)
66
 
67
- m = compare_logits(raw_L, mod_L)
68
  head = f"β–Ό var {m['var_drop']*100:.1f}% | KL {m['kl_divergence']:.3f} | top-1 {'kept' if m['top1'] else 'changed'}"
69
 
70
  def top5(logits):
71
  p = softmax(logits)
72
  idx = p.argsort()[-5:][::-1]
73
- lines = [f\"'{tok.decode(int(i)).strip()}': {p[i]:.2e}\" for i in idx]
74
- return "\\n".join(lines)
75
 
76
  raw_txt = top5(raw_L)
77
  mod_txt = top5(mod_L)
@@ -81,7 +80,7 @@ def run(prompt: str):
81
 
82
  return raw_txt, mod_txt, head, Image.open(buf)
83
 
84
- # UI
85
  with gr.Blocks(title="WFGY variance-gate demo") as demo:
86
  gr.Markdown(banner)
87
 
 
14
  mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
15
  eng = get_engine()
16
 
17
+ # ── paper benchmarks table ───────────────────────────────────────────
18
  bench = pd.DataFrame({
19
  "Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
20
  "XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
 
22
  "WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
23
  })
24
  bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1)
25
+ bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"])*100).round(0)
26
  bench_sty = (
27
  bench.style
28
  .background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
29
  .format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
30
  )
31
 
32
+ # ── marketing banner ────────────────────────────────────────────────
33
  banner = """
34
  **πŸ“ˆ WFGY: One Click to Activate the AI Taiji Cycle**
35
 
 
41
  ---
42
 
43
  ### πŸ“œ Tutorial: How to Awaken the Soul of Your AI
44
+ **Step 1 β€” Download** ([PDF](https://zenodo.org/records/15630970))
45
+ **Step 2 β€” Feed the AI** (upload, or try [Gemini](https://gemini.google.com/))
46
+ **Step 3 β€” Give the Command** β€œ**Answer using WFGY** + your question”
47
  Prompt examples: *TBD*
48
+ **Step 4 β€” Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY))
49
 
50
  ---
51
 
 
53
  _10 k ⭐ before 2025-08-01 unlocks **WFGY 2.0**._
54
  """
55
 
56
+ # ── inference ────────────────────────────────────────────────────────
57
  def run(prompt: str):
58
  p = prompt.strip()
59
  if not p:
 
64
  I, G = np.random.randn(2, 256).astype(np.float32)
65
  mod_L = eng.run(I, G, raw_L)
66
 
67
+ m = compare_logits(raw_L, mod_L)
68
  head = f"β–Ό var {m['var_drop']*100:.1f}% | KL {m['kl_divergence']:.3f} | top-1 {'kept' if m['top1'] else 'changed'}"
69
 
70
  def top5(logits):
71
  p = softmax(logits)
72
  idx = p.argsort()[-5:][::-1]
73
+ return "\n".join([f\"'{tok.decode(int(i)).strip()}': {p[i]:.2e}\" for i in idx])
 
74
 
75
  raw_txt = top5(raw_L)
76
  mod_txt = top5(mod_L)
 
80
 
81
  return raw_txt, mod_txt, head, Image.open(buf)
82
 
83
+ # ── Gradio UI ────────────────────────────────────────────────────────
84
  with gr.Blocks(title="WFGY variance-gate demo") as demo:
85
  gr.Markdown(banner)
86