Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,26 @@ matplotlib.use("Agg")
|
|
3 |
|
4 |
from PIL import Image
|
5 |
import pandas as pd, plotly.express as px, gradio as gr
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
from wfgy_sdk import get_engine
|
8 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
9 |
|
10 |
-
#
|
|
|
|
|
11 |
tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
12 |
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
13 |
eng = get_engine()
|
14 |
|
15 |
-
#
|
|
|
|
|
16 |
history = {"step": [0], "var": [0.0], "kl": [0.0]}
|
17 |
|
18 |
-
#
|
|
|
|
|
19 |
paper_df = pd.DataFrame({
|
20 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
21 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
@@ -23,14 +30,55 @@ paper_df = pd.DataFrame({
|
|
23 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
24 |
})
|
25 |
paper_df["Abs_gain"] = (paper_df["WFGY"] - paper_df["Baseline"]).round(1)
|
26 |
-
paper_df["Rel_gain%"] = ((paper_df["Abs_gain"] / paper_df["Baseline"])*100).round(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def run(prompt: str):
|
29 |
-
|
30 |
-
if not
|
31 |
-
return "", "", "", None, plot_history()
|
32 |
-
|
33 |
-
|
|
|
34 |
G = np.random.randn(256).astype(np.float32)
|
35 |
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
36 |
modL = eng.run(I, G, rawL)
|
@@ -38,52 +86,46 @@ def run(prompt: str):
|
|
38 |
m = compare_logits(rawL, modL)
|
39 |
step = len(history["step"])
|
40 |
history["step"].append(step)
|
41 |
-
history["var"].append(m["var_drop"]*100)
|
42 |
history["kl"].append(m["kl"])
|
43 |
|
44 |
fig = plot_histogram(rawL, modL)
|
45 |
buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
|
46 |
img = Image.open(buf)
|
47 |
|
48 |
-
headline = f"βΌ var {m['var_drop']*100:4.1f}% | KL {m['kl']:.3f}"
|
49 |
-
note = f"*top-1 token {'changed' if not m['top1'] else 'kept'}*"
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
return
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
title="history (var% β & KL)").update_layout(height=260)
|
61 |
-
|
62 |
-
def clear_hist():
|
63 |
-
history["step"][:] = [0]
|
64 |
-
history["var"][:] = [0.0]
|
65 |
-
history["kl"][:] = [0.0]
|
66 |
-
return plot_history()
|
67 |
-
|
68 |
-
with gr.Blocks(title="WFGY variance gate") as demo:
|
69 |
gr.Markdown("# π§ WFGY simulation demo")
|
70 |
prompt = gr.Textbox(label="Prompt", value="Explain SchrΓΆdinger's cat")
|
71 |
run_btn = gr.Button("π Run")
|
|
|
72 |
with gr.Row():
|
73 |
-
raw_box = gr.Textbox(label="Raw
|
74 |
-
mod_box = gr.Textbox(label="
|
|
|
75 |
headline = gr.Markdown()
|
76 |
hist_img = gr.Image(type="pil", label="Logit histogram")
|
77 |
-
hist_plot = gr.Plot(
|
78 |
clr_btn = gr.Button("Clear history")
|
79 |
|
80 |
with gr.Accordion("Paper benchmarks", open=False):
|
81 |
-
gr.DataFrame(
|
|
|
82 |
|
83 |
-
gr.Markdown("---\nβ **10 000 GitHub stars before 2025-08-01 unlock WFGY
|
84 |
|
85 |
-
run_btn.click(run, prompt,
|
86 |
-
|
|
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
demo.queue().launch()
|
|
|
3 |
|
4 |
from PIL import Image
|
5 |
import pandas as pd, plotly.express as px, gradio as gr
|
6 |
+
import torch
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
from wfgy_sdk import get_engine
|
9 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
10 |
|
11 |
+
# ββββββββββββββββββββββββββββ
|
12 |
+
# tiny model + engine
|
13 |
+
# ββββββββββββββββββββββββββββ
|
14 |
tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
15 |
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
16 |
eng = get_engine()
|
17 |
|
18 |
+
# ββββββββββββββββββββββββββββ
|
19 |
+
# runtime history (dummy zero so line is never empty)
|
20 |
+
# ββββββββββββββββββββββββββββ
|
21 |
history = {"step": [0], "var": [0.0], "kl": [0.0]}
|
22 |
|
23 |
+
# ββββββββββββββββββββββββββββ
|
24 |
+
# paper benchmark table
|
25 |
+
# ββββββββββββββββββββββββββββ
|
26 |
paper_df = pd.DataFrame({
|
27 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
28 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
|
|
30 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
31 |
})
|
32 |
paper_df["Abs_gain"] = (paper_df["WFGY"] - paper_df["Baseline"]).round(1)
|
33 |
+
paper_df["Rel_gain%"] = ((paper_df["Abs_gain"] / paper_df["Baseline"]) * 100).round(0)
|
34 |
+
|
35 |
+
styled_df = (
|
36 |
+
paper_df.style
|
37 |
+
.background_gradient(subset=["Abs_gain"], cmap="Greens")
|
38 |
+
.background_gradient(subset=["Rel_gain%"], cmap="Greens")
|
39 |
+
.format({"Abs_gain": "{:.1f}", "Rel_gain%": "{:.0f}"})
|
40 |
+
)
|
41 |
+
|
42 |
+
paper_bar = px.bar(
|
43 |
+
paper_df, x="Benchmark", y="Rel_gain%",
|
44 |
+
title="Relative gain (%)", color="Rel_gain%",
|
45 |
+
color_continuous_scale="Greens", height=300
|
46 |
+
)
|
47 |
+
|
48 |
+
# ββββββββββββββββββββββββββββ
|
49 |
+
# helpers
|
50 |
+
# ββββββββββββββββββββββββββββ
|
51 |
+
def top5_tokens(logits: np.ndarray):
|
52 |
+
"""return list of (token, prob) sorted desc"""
|
53 |
+
probs = torch.softmax(torch.tensor(logits), dim=0).numpy()
|
54 |
+
idx = probs.argsort()[-5:][::-1]
|
55 |
+
items = []
|
56 |
+
for i in idx:
|
57 |
+
token = tok.decode(int(i)).replace("\n", "\\n")
|
58 |
+
prob = probs[i]
|
59 |
+
items.append(f"{token!r}: {prob:.3f}")
|
60 |
+
return "\n".join(items)
|
61 |
|
62 |
+
def plot_history():
|
63 |
+
df = pd.DataFrame(history)
|
64 |
+
return px.line(df, x="step", y=["var", "kl"],
|
65 |
+
labels={"value":"metric","step":"call"},
|
66 |
+
title="history (var% β & KL)").update_layout(height=260)
|
67 |
+
|
68 |
+
def clear_history():
|
69 |
+
history["step"][:] = [0]; history["var"][:]=[0.0]; history["kl"][:]=[0.0]
|
70 |
+
return plot_history()
|
71 |
+
|
72 |
+
# ββββββββββββββββββββββββββββ
|
73 |
+
# main run
|
74 |
+
# ββββββββββββββββββββββββββββ
|
75 |
def run(prompt: str):
|
76 |
+
p = prompt.strip()
|
77 |
+
if not p:
|
78 |
+
return "", "", "", "", None, plot_history()
|
79 |
+
|
80 |
+
ids = tok(p, return_tensors="pt").input_ids
|
81 |
+
rawL = mdl(ids).logits[0, -1].detach().cpu().numpy()
|
82 |
G = np.random.randn(256).astype(np.float32)
|
83 |
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
84 |
modL = eng.run(I, G, rawL)
|
|
|
86 |
m = compare_logits(rawL, modL)
|
87 |
step = len(history["step"])
|
88 |
history["step"].append(step)
|
89 |
+
history["var"].append(m["var_drop"] * 100)
|
90 |
history["kl"].append(m["kl"])
|
91 |
|
92 |
fig = plot_histogram(rawL, modL)
|
93 |
buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
|
94 |
img = Image.open(buf)
|
95 |
|
96 |
+
headline = f"βΌ var {m['var_drop']*100:4.1f}% | KL {m['kl']:.3f} | top-1 {'kept' if m['top1'] else 'changed'}"
|
|
|
97 |
|
98 |
+
raw_top5 = top5_tokens(rawL)
|
99 |
+
mod_top5 = top5_tokens(modL)
|
100 |
|
101 |
+
return raw_top5, mod_top5, headline, img, plot_history()
|
102 |
|
103 |
+
# ββββββββββββββββββββββββββββ
|
104 |
+
# UI layout
|
105 |
+
# ββββββββββββββββββββββββββββ
|
106 |
+
with gr.Blocks(title="WFGY variance gate demo") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
gr.Markdown("# π§ WFGY simulation demo")
|
108 |
prompt = gr.Textbox(label="Prompt", value="Explain SchrΓΆdinger's cat")
|
109 |
run_btn = gr.Button("π Run")
|
110 |
+
|
111 |
with gr.Row():
|
112 |
+
raw_box = gr.Textbox(label="Raw top-5 tokens", lines=6)
|
113 |
+
mod_box = gr.Textbox(label="WFGY top-5 tokens", lines=6)
|
114 |
+
|
115 |
headline = gr.Markdown()
|
116 |
hist_img = gr.Image(type="pil", label="Logit histogram")
|
117 |
+
hist_plot = gr.Plot()
|
118 |
clr_btn = gr.Button("Clear history")
|
119 |
|
120 |
with gr.Accordion("Paper benchmarks", open=False):
|
121 |
+
gr.DataFrame(value=styled_df, interactive=False, wrap=True)
|
122 |
+
gr.Plot(paper_bar)
|
123 |
|
124 |
+
gr.Markdown("---\nβ **10 000 GitHub stars before 2025-08-01 unlock WFGY 2.0**")
|
125 |
|
126 |
+
run_btn.click(run, prompt,
|
127 |
+
[raw_box, mod_box, headline, hist_img, hist_plot])
|
128 |
+
clr_btn.click(clear_history, None, hist_plot)
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
demo.queue().launch()
|