Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,81 @@
|
|
1 |
-
import io, traceback, numpy as np,
|
2 |
matplotlib.use("Agg")
|
|
|
3 |
from PIL import Image
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from wfgy_sdk import get_engine
|
6 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
7 |
-
from tabulate import tabulate
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def run(prompt: str):
|
15 |
prompt = prompt.strip()
|
16 |
if not prompt:
|
17 |
-
return "", "", "", None,
|
18 |
try:
|
19 |
ids = tok(prompt, return_tensors="pt").input_ids
|
20 |
-
|
21 |
G = np.random.randn(256).astype(np.float32)
|
22 |
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
|
37 |
img = Image.open(buf)
|
38 |
|
39 |
-
raw_txt = prompt + tok.decode(int(
|
40 |
-
mod_txt = prompt + tok.decode(int(
|
41 |
-
return raw_txt, mod_txt, headline,
|
42 |
except Exception:
|
43 |
tb = traceback.format_exc()
|
44 |
-
return "runtime error", tb, "runtime error", "", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
with gr.Blocks(title="WFGY variance gate") as demo:
|
47 |
gr.Markdown("# 🧠 WFGY simulation demo")
|
@@ -53,15 +87,29 @@ with gr.Blocks(title="WFGY variance gate") as demo:
|
|
53 |
mod_box = gr.Textbox(label="After WFGY")
|
54 |
|
55 |
headline = gr.Markdown()
|
56 |
-
metrics = gr.Markdown()
|
57 |
img = gr.Image(label="Logit histogram", type="pil")
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
gr.
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
if __name__ == "__main__":
|
66 |
demo.queue().launch()
|
67 |
-
|
|
|
1 |
+
import io, json, traceback, numpy as np, matplotlib
|
2 |
matplotlib.use("Agg")
|
3 |
+
|
4 |
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
from wfgy_sdk import get_engine
|
8 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
|
|
9 |
|
10 |
+
# model + engine
|
11 |
+
MODEL_ID = "sshleifer/tiny-gpt2"
|
12 |
+
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
13 |
+
mdl = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
14 |
+
eng = get_engine()
|
15 |
+
|
16 |
+
# runtime history
|
17 |
+
hist = {"step": [], "var": [], "kl": []}
|
18 |
+
|
19 |
+
# paper benchmark numbers
|
20 |
+
paper = {
|
21 |
+
"benchmark": [
|
22 |
+
"MMLU", "GSM8K", "BBH", "MathBench",
|
23 |
+
"TruthfulQA", "XNLI", "MLQA", "LongBench",
|
24 |
+
"VQAv2", "OK-VQA"
|
25 |
+
],
|
26 |
+
"baseline": [61.0, 78.0, 79.3, 72.2, 62.4, 59.5, 78.1, 51.4, 69.1, 65.7],
|
27 |
+
"wfgy": [89.8, 98.7, 100.7, 87.4, 90.4, 77.3, 106.6, 69.6, 86.6, 86.8]
|
28 |
+
}
|
29 |
|
30 |
def run(prompt: str):
|
31 |
prompt = prompt.strip()
|
32 |
if not prompt:
|
33 |
+
return "", "", "", "", None, update_history()
|
34 |
try:
|
35 |
ids = tok(prompt, return_tensors="pt").input_ids
|
36 |
+
raw = mdl(ids).logits[0, -1].detach().cpu().numpy()
|
37 |
G = np.random.randn(256).astype(np.float32)
|
38 |
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
39 |
+
mod = eng.run(I, G, raw)
|
40 |
+
m = compare_logits(raw, mod)
|
41 |
+
|
42 |
+
# update history
|
43 |
+
step = len(hist["step"]) + 1
|
44 |
+
hist["step"].append(step)
|
45 |
+
hist["var"].append(m["var_drop"] * 100)
|
46 |
+
hist["kl"].append(m["kl"])
|
47 |
+
|
48 |
+
headline = f"▼ var {m['var_drop']*100:4.1f}% | KL {m['kl']:.3f}"
|
49 |
+
metrics_md = (
|
50 |
+
"| metric | value |\n"
|
51 |
+
"|--------|-------|\n"
|
52 |
+
f"| std_ratio | {m['std_ratio']:.3f} |\n"
|
53 |
+
f"| var_drop | {m['var_drop']*100:.1f}% |\n"
|
54 |
+
f"| KL | {m['kl']:.3f} |\n"
|
55 |
+
f"| top-1 same| {'yes' if m['top1'] else 'no'} |"
|
56 |
+
)
|
57 |
+
|
58 |
+
fig = plot_histogram(raw, mod)
|
59 |
buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
|
60 |
img = Image.open(buf)
|
61 |
|
62 |
+
raw_txt = prompt + tok.decode(int(raw.argmax()))
|
63 |
+
mod_txt = prompt + tok.decode(int(mod.argmax()))
|
64 |
+
return raw_txt, mod_txt, headline, metrics_md, img, update_history()
|
65 |
except Exception:
|
66 |
tb = traceback.format_exc()
|
67 |
+
return "runtime error", tb, "runtime error", "", None, update_history()
|
68 |
+
|
69 |
+
def update_history():
|
70 |
+
return {
|
71 |
+
"step": hist["step"],
|
72 |
+
"var": hist["var"],
|
73 |
+
"kl": hist["kl"]
|
74 |
+
}
|
75 |
+
|
76 |
+
def clear_history():
|
77 |
+
hist["step"].clear(); hist["var"].clear(); hist["kl"].clear()
|
78 |
+
return update_history()
|
79 |
|
80 |
with gr.Blocks(title="WFGY variance gate") as demo:
|
81 |
gr.Markdown("# 🧠 WFGY simulation demo")
|
|
|
87 |
mod_box = gr.Textbox(label="After WFGY")
|
88 |
|
89 |
headline = gr.Markdown()
|
90 |
+
metrics = gr.Markdown()
|
91 |
img = gr.Image(label="Logit histogram", type="pil")
|
92 |
|
93 |
+
hist_plot = gr.LinePlot(
|
94 |
+
label="History (var% ↓ & KL)",
|
95 |
+
x="step", y=["var", "kl"],
|
96 |
+
overlay=True, height=250
|
97 |
+
)
|
98 |
+
clear_btn = gr.Button("Clear history")
|
99 |
|
100 |
+
with gr.Accordion("Paper benchmarks", open=False):
|
101 |
+
bench_df = gr.DataFrame(paper, interactive=False)
|
102 |
+
bench_bar = gr.BarPlot(paper, x="benchmark", y=["baseline", "wfgy"],
|
103 |
+
overlay=False, height=300)
|
104 |
+
|
105 |
+
gr.Markdown(
|
106 |
+
"---\n"
|
107 |
+
"### ⭐ 10 000 GitHub stars before **2025-08-01** unlock **WFGY 2.0**"
|
108 |
+
)
|
109 |
+
|
110 |
+
btn.click(run, prompt,
|
111 |
+
[raw_box, mod_box, headline, metrics, img, hist_plot])
|
112 |
+
clear_btn.click(fn=clear_history, inputs=None, outputs=hist_plot)
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
demo.queue().launch()
|
|