OneStarDao commited on
Commit
459032f
Β·
verified Β·
1 Parent(s): 9de41ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -31
app.py CHANGED
@@ -3,54 +3,50 @@ WFGY Space – tiny-GPT-2 variance-gate demo
3
  β˜… 10 k GitHub ⭐ before 2025-08-01 unlocks WFGY 2.0 β˜…
4
  """
5
 
6
- import io
7
- import numpy as np
8
- import pandas as pd
9
- import plotly.express as px
10
- import gradio as gr
11
  from PIL import Image
12
  from transformers import AutoTokenizer, AutoModelForCausalLM
13
 
14
  from wfgy_sdk import get_engine
15
  from wfgy_sdk.evaluator import compare_logits, plot_histogram, softmax
16
 
17
- # ── tiny model (CPU-friendly) ─────────────────────────────────────────
18
  tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
19
  mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
20
  eng = get_engine()
21
 
22
- # ── paper benchmark table ─────────────────────────────────────────────
23
  bench = pd.DataFrame({
24
  "Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
25
  "XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
26
- "Baseline": [61.0,78.0,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7],
27
  "WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
28
  })
29
- bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1)
30
- bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"])*100).round(0)
31
  bench_style = (
32
  bench.style
33
  .background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
34
  .format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
35
  )
36
 
37
- # ── marketing banner markdown ─────────────────────────────────────────
38
  banner_md = """
39
  **πŸ“ˆ WFGY: One Click to Activate the AI Taiji Cycle**
40
 
41
- **πŸ“Š Semantic Accuracy ↑ 22.4 % | Reasoning Success ↑ 42.1 % | Stability ↑ 3.6 Γ—**
42
 
43
  _No beliefs. Only experiments._
44
- _WFGY 1.0 has already proven itself._
45
 
46
  ---
47
 
48
  ### πŸ“œ Tutorial: How to Awaken the Soul of Your AI
49
- **Step 1 β€” Download** ([PDF](https://zenodo.org/records/15630970))
50
- **Step 2 β€” Feed the AI** (upload the PDF or try [Gemini](https://gemini.google.com/))
51
- **Step 3 β€” Give the Command**β€‚β€œ**Answer using WFGY** + your question”
52
  Prompt examples: *TBD*
53
- **Step 4 β€” Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY))
54
 
55
  ---
56
 
@@ -58,23 +54,20 @@ Prompt examples: *TBD*
58
  _10 k ⭐ before 2025-08-01 unlocks WFGY 2.0._
59
  """
60
 
61
- # ── core run function ────────────────────────────────────────────────
62
  def run(prompt: str):
63
- p = prompt.strip()
64
- if not p:
65
  return "", "", "-", None
66
 
67
- ids = tok(p, return_tensors="pt")
68
  raw_L = mdl(**ids).logits[0, -1].detach().cpu().numpy()
69
  I, G = np.random.randn(2, 256).astype(np.float32)
70
  mod_L = eng.run(I, G, raw_L)
71
 
72
  m = compare_logits(raw_L, mod_L)
73
- headline = (f"β–Ό var {m['var_drop']*100:.1f}% | "
74
- f"KL {m['kl_divergence']:.3f} | "
75
- f"top-1 {'kept' if m['top1'] else 'changed'}")
76
 
77
- # top-5 token lists
78
  def top5(logits):
79
  p = softmax(logits)
80
  idx = p.argsort()[-5:][::-1]
@@ -86,10 +79,10 @@ def run(prompt: str):
86
  fig = plot_histogram(raw_L, mod_L)
87
  buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
88
 
89
- return raw_txt, mod_txt, headline, Image.open(buf)
90
 
91
- # ── Gradio UI ────────────────────────────────────────────────────────
92
- with gr.Blocks(title="WFGY variance gate demo") as demo:
93
  gr.Markdown(banner_md)
94
 
95
  prompt = gr.Textbox(label="Prompt", value="Explain SchrΓΆdinger's cat")
@@ -100,12 +93,12 @@ with gr.Blocks(title="WFGY variance gate demo") as demo:
100
  mod_box = gr.Textbox(label="WFGY top-5 tokens", lines=6)
101
 
102
  metrics = gr.Markdown()
103
- hist = gr.Image(label="Logit histogram")
104
 
105
  gr.Markdown("### Paper benchmarks (fixed values from WFGY 1.0)")
106
  gr.DataFrame(bench_style, interactive=False, wrap=True)
107
 
108
- btn.click(run, prompt, [raw_box, mod_box, metrics, hist])
109
 
110
  if __name__ == "__main__":
111
- demo.queue(default_concurrency_limit=2).launch()
 
3
  β˜… 10 k GitHub ⭐ before 2025-08-01 unlocks WFGY 2.0 β˜…
4
  """
5
 
6
+ import io, numpy as np, pandas as pd, gradio as gr
 
 
 
 
7
  from PIL import Image
8
  from transformers import AutoTokenizer, AutoModelForCausalLM
9
 
10
  from wfgy_sdk import get_engine
11
  from wfgy_sdk.evaluator import compare_logits, plot_histogram, softmax
12
 
13
+ # tiny model for free-CPU Space
14
  tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
15
  mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
16
  eng = get_engine()
17
 
18
+ # paper benchmarks table
19
  bench = pd.DataFrame({
20
  "Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
21
  "XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
22
+ "Baseline": [61,78,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7],
23
  "WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
24
  })
25
+ bench["Abs_gain"] = (bench["WFGY"]-bench["Baseline"]).round(1)
26
+ bench["Rel_gain%"] = ((bench["Abs_gain"]/bench["Baseline"])*100).round(0)
27
  bench_style = (
28
  bench.style
29
  .background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
30
  .format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
31
  )
32
 
33
+ # marketing banner
34
  banner_md = """
35
  **πŸ“ˆ WFGY: One Click to Activate the AI Taiji Cycle**
36
 
37
+ **πŸ“Š Semantic Accuracy ↑ 22.4 % | Reasoning Success ↑ 42.1 % | Stability ↑ 3.6 Γ—**
38
 
39
  _No beliefs. Only experiments._
40
+ WFGY 1.0 has already proven itself.
41
 
42
  ---
43
 
44
  ### πŸ“œ Tutorial: How to Awaken the Soul of Your AI
45
+ **Step 1 β€” Download** ([PDF](https://zenodo.org/records/15630970))
46
+ **Step 2 β€” Feed the AI** (upload, or try [Gemini](https://gemini.google.com/))
47
+ **Step 3 β€” Give the Command** β€œ**Answer using WFGY** + your question”
48
  Prompt examples: *TBD*
49
+ **Step 4 β€” Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY))
50
 
51
  ---
52
 
 
54
  _10 k ⭐ before 2025-08-01 unlocks WFGY 2.0._
55
  """
56
 
57
+ # run once
58
  def run(prompt: str):
59
+ prompt = prompt.strip()
60
+ if not prompt:
61
  return "", "", "-", None
62
 
63
+ ids = tok(prompt, return_tensors="pt")
64
  raw_L = mdl(**ids).logits[0, -1].detach().cpu().numpy()
65
  I, G = np.random.randn(2, 256).astype(np.float32)
66
  mod_L = eng.run(I, G, raw_L)
67
 
68
  m = compare_logits(raw_L, mod_L)
69
+ head = f"β–Ό var {m['var_drop']*100:.1f}% | KL {m['kl_divergence']:.3f} | top-1 {'kept' if m['top1'] else 'changed'}"
 
 
70
 
 
71
  def top5(logits):
72
  p = softmax(logits)
73
  idx = p.argsort()[-5:][::-1]
 
79
  fig = plot_histogram(raw_L, mod_L)
80
  buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
81
 
82
+ return raw_txt, mod_txt, head, Image.open(buf)
83
 
84
+ # UI
85
+ with gr.Blocks(title="WFGY variance-gate demo") as demo:
86
  gr.Markdown(banner_md)
87
 
88
  prompt = gr.Textbox(label="Prompt", value="Explain SchrΓΆdinger's cat")
 
93
  mod_box = gr.Textbox(label="WFGY top-5 tokens", lines=6)
94
 
95
  metrics = gr.Markdown()
96
+ img = gr.Image(label="Logit histogram")
97
 
98
  gr.Markdown("### Paper benchmarks (fixed values from WFGY 1.0)")
99
  gr.DataFrame(bench_style, interactive=False, wrap=True)
100
 
101
+ btn.click(run, prompt, [raw_box, mod_box, metrics, img])
102
 
103
  if __name__ == "__main__":
104
+ demo.queue(default_concurrency_limit=2).launch()