Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import io, numpy as np, matplotlib
|
2 |
matplotlib.use("Agg")
|
3 |
|
@@ -8,77 +14,84 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
8 |
from wfgy_sdk import get_engine
|
9 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
10 |
|
11 |
-
# tiny model
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
# paper table
|
20 |
-
paper_df = pd.DataFrame({
|
21 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
22 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
23 |
"Baseline": [61.0,78.0,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7],
|
24 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
25 |
})
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
paper_df.style
|
31 |
.background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
|
32 |
.format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
|
33 |
)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
)
|
40 |
-
|
41 |
-
|
42 |
-
def
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
def
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
76 |
|
77 |
-
# UI
|
78 |
-
with gr.Blocks(title="WFGY variance gate demo") as demo:
|
79 |
-
gr.Markdown("# π§ WFGY simulation demo")
|
80 |
prompt = gr.Textbox(label="Prompt", value="Explain SchrΓΆdinger's cat")
|
81 |
-
|
82 |
|
83 |
with gr.Row():
|
84 |
raw_box = gr.Textbox(label="Raw top-5 tokens", lines=6)
|
@@ -86,17 +99,24 @@ with gr.Blocks(title="WFGY variance gate demo") as demo:
|
|
86 |
|
87 |
headline = gr.Markdown()
|
88 |
hist_img = gr.Image(type="pil", label="Logit histogram")
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
gr.Plot(paper_bar)
|
95 |
|
96 |
-
|
|
|
97 |
|
98 |
-
|
99 |
-
|
|
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
demo.queue().launch()
|
|
|
1 |
+
"""
|
2 |
+
WFGY Space β interactive variance-gate demo (tiny-GPT-2 version)
|
3 |
+
|
4 |
+
β
Help us reach 10 k GitHub stars before 2025-08-01 to unlock WFGY 2.0 β
|
5 |
+
"""
|
6 |
+
|
7 |
import io, numpy as np, matplotlib
|
8 |
matplotlib.use("Agg")
|
9 |
|
|
|
14 |
from wfgy_sdk import get_engine
|
15 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
16 |
|
17 |
+
# ββ tiny model keeps HF Space free-CPU build fast ββ
|
18 |
+
TOKENIZER = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
19 |
+
MODEL = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
20 |
+
ENGINE = get_engine()
|
21 |
|
22 |
+
# ββ benchmark table from the WFGY 1.0 paper ββ
|
23 |
+
paper = pd.DataFrame({
|
|
|
|
|
|
|
24 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
25 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
26 |
"Baseline": [61.0,78.0,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7],
|
27 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
28 |
})
|
29 |
+
paper["Abs_gain"] = (paper["WFGY"] - paper["Baseline"]).round(1)
|
30 |
+
paper["Rel_gain%"] = ((paper["Abs_gain"] / paper["Baseline"]) * 100).round(0)
|
31 |
+
paper_style = (
|
32 |
+
paper.style
|
|
|
33 |
.background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
|
34 |
.format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
|
35 |
)
|
36 |
|
37 |
+
# ββ helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
38 |
+
def top5(txt_logits: np.ndarray) -> str:
|
39 |
+
probs = torch.softmax(torch.tensor(txt_logits), dim=0).numpy()
|
40 |
+
idx = probs.argsort()[-5:][::-1]
|
41 |
+
rows = [f"{TOKENIZER.decode(int(i)).strip()!r}: {probs[i]:.2e}" for i in idx]
|
42 |
+
return "\n".join(rows)
|
43 |
+
|
44 |
+
def history_plot(hist):
|
45 |
+
if not hist["step"]:
|
46 |
+
return gr.Plot()
|
47 |
+
df = pd.DataFrame(hist)
|
48 |
+
return px.line(
|
49 |
+
df, x="step", y=["var","kl"],
|
50 |
+
labels={"value":"metric","step":"call"},
|
51 |
+
title="History (variance β & KL)",
|
52 |
+
height=270
|
53 |
+
)
|
54 |
+
|
55 |
+
def run(prompt, hist):
|
56 |
+
prompt = prompt.strip()
|
57 |
+
if not prompt:
|
58 |
+
return "", "", " ", None, history_plot(hist)
|
59 |
+
|
60 |
+
ids = TOKENIZER(prompt, return_tensors="pt").input_ids
|
61 |
+
rawL = MODEL(ids).logits[0, -1].detach().cpu().numpy()
|
62 |
+
G = np.random.randn(256).astype(np.float32)
|
63 |
+
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
64 |
+
modL = ENGINE.run(I, G, rawL)
|
65 |
+
|
66 |
+
met = compare_logits(rawL, modL)
|
67 |
+
n = len(hist["step"])
|
68 |
+
hist["step"].append(n)
|
69 |
+
hist["var"].append(met["var_drop"]*100)
|
70 |
+
hist["kl"].append(met["kl_divergence"])
|
71 |
+
|
72 |
+
fig = plot_histogram(rawL, modL)
|
73 |
+
buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
|
74 |
+
head = f"βΌ var {met['var_drop']*100:4.1f}% | KL {met['kl_divergence']:.3f} | top-1 {'kept' if met['top1'] else 'changed'}"
|
75 |
+
|
76 |
+
return top5(rawL), top5(modL), head, Image.open(buf), history_plot(hist)
|
77 |
+
|
78 |
+
def clear(hist):
|
79 |
+
hist["step"].clear(); hist["var"].clear(); hist["kl"].clear()
|
80 |
+
return history_plot(hist)
|
81 |
+
|
82 |
+
# ββ UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
83 |
+
with gr.Blocks(title="WFGY variance gate demo") as demo:
|
84 |
+
gr.Markdown(
|
85 |
+
"""
|
86 |
+
# π§ **WFGY simulation demo**
|
87 |
+
Tiny GPT-2 + variance-gate. Type any prompt and watch logits collapse.
|
88 |
|
89 |
+
[β Star the repo](https://github.com/onestardao/WFGY) β 10 k β before **2025-08-01** unlocks WFGY 2.0.
|
90 |
+
[π PDF](https://doi.org/10.5281/zenodo.15630970) β’ [GitHub](https://github.com/onestardao/WFGY)
|
91 |
+
""")
|
92 |
|
|
|
|
|
|
|
93 |
prompt = gr.Textbox(label="Prompt", value="Explain SchrΓΆdinger's cat")
|
94 |
+
run_btn = gr.Button("π Run")
|
95 |
|
96 |
with gr.Row():
|
97 |
raw_box = gr.Textbox(label="Raw top-5 tokens", lines=6)
|
|
|
99 |
|
100 |
headline = gr.Markdown()
|
101 |
hist_img = gr.Image(type="pil", label="Logit histogram")
|
102 |
+
hist_plot = gr.Plot()
|
103 |
+
clear_btn = gr.Button("Clear history")
|
104 |
+
|
105 |
+
with gr.Accordion("Paper benchmarks (fixed values from WFGY 1.0)", open=False):
|
106 |
+
gr.DataFrame(paper_style, interactive=False, wrap=True)
|
107 |
+
gr.Markdown(
|
108 |
+
"These numbers come from the paper; run your own benchmarks with "
|
109 |
+
"`WFGY/examples/example_08_big_model.py` on a larger LLM.")
|
110 |
|
111 |
+
gr.Markdown("---\n*Free CPU demo = modest effect.* "
|
112 |
+
"Try a bigger model locally for dramatic variance drop & KL gain.")
|
|
|
113 |
|
114 |
+
# state for history
|
115 |
+
hist_state = gr.State({"step": [], "var": [], "kl": []})
|
116 |
|
117 |
+
run_btn.click(run, [prompt, hist_state],
|
118 |
+
[raw_box, mod_box, headline, hist_img, hist_plot])
|
119 |
+
clear_btn.click(clear, hist_state, hist_plot)
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
demo.queue().launch()
|