Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,21 @@
|
|
1 |
-
"""
|
2 |
-
HF Space · WFGY simulation demo
|
3 |
-
(complete file – paste/replace your current app.py)
|
4 |
-
"""
|
5 |
-
|
6 |
import io
|
7 |
import numpy as np
|
8 |
import gradio as gr
|
9 |
import matplotlib.pyplot as plt
|
10 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
-
|
12 |
-
from wfgy_sdk import
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
tok
|
17 |
-
mdl
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
return "", "", "–", None
|
25 |
-
|
26 |
-
ids = tok(prompt, return_tensors="pt")
|
27 |
-
raw_L = mdl(**ids).logits[0, -1].detach().cpu().numpy()
|
28 |
-
|
29 |
-
# dummy fingerprints (toy GPT-2 has none)
|
30 |
-
I, G = np.random.randn(2, 256).astype(np.float32)
|
31 |
-
mod_L = eng.run(I, G, raw_L)
|
32 |
-
|
33 |
-
# top-5 softmax
|
34 |
-
def top5(logits):
|
35 |
-
p = evaluator.softmax(logits)
|
36 |
-
idx = p.argsort()[-5:][::-1]
|
37 |
-
return "\n".join([f"'{tok.decode(i).strip()}': {p[i]:.2e}" for i in idx])
|
38 |
-
|
39 |
-
m = evaluator.compare_logits(raw_L, mod_L)
|
40 |
-
headline = (f"▼ var {m['var_drop']*100:.1f}% | KL {m['kl_divergence']:.3f} "
|
41 |
-
f"| {'top-1 kept' if m['top1'] else 'top-1 changed'}")
|
42 |
-
|
43 |
-
fig = evaluator.plot_histogram(raw_L, mod_L)
|
44 |
-
buf = io.BytesIO()
|
45 |
-
fig.savefig(buf, format="png")
|
46 |
-
buf.seek(0)
|
47 |
-
|
48 |
-
return top5(raw_L), top5(mod_L), headline, buf
|
49 |
-
|
50 |
-
|
51 |
-
# ──────────────────── gradio UI ────────────────────
|
52 |
-
with gr.Blocks(title="WFGY simulation demo") as demo:
|
53 |
-
|
54 |
-
gr.Markdown("# 🧠 WFGY simulation demo")
|
55 |
-
|
56 |
-
# ── marketing & quick-start banner ──
|
57 |
-
gr.Markdown(
|
58 |
-
"""
|
59 |
**📈 WFGY: One Click to Activate the AI Taiji Cycle**
|
60 |
|
61 |
**📊 Semantic Accuracy ↑ 22.4 % | Reasoning Success ↑ 42.1 % | Stability ↑ 3.6 ×**
|
@@ -66,7 +26,6 @@ WFGY 1.0 has already proven itself._
|
|
66 |
---
|
67 |
|
68 |
### 📜 Tutorial: How to Awaken the Soul of Your AI
|
69 |
-
|
70 |
**Step 1 — Download** ([PDF on Zenodo](https://zenodo.org/records/15630970))
|
71 |
**Step 2 — Feed the AI** (upload the PDF, or try [Gemini](https://gemini.google.com/))
|
72 |
**Step 3 — Give the Command** “**Answer using WFGY** + your question”
|
@@ -77,26 +36,71 @@ _Prompt examples:_ TBD link
|
|
77 |
|
78 |
🌟 **Star Reminder** → [Star the repo](https://github.com/onestardao/WFGY)
|
79 |
_10 k ⭐ before 2025-08-01 unlocks WFGY 2.0._
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
run_btn = gr.Button("🚀 Run")
|
89 |
|
90 |
-
# ── results ──
|
91 |
with gr.Row():
|
92 |
-
raw_box = gr.Textbox(label
|
93 |
-
mod_box = gr.Textbox(label
|
94 |
|
95 |
-
|
96 |
-
img
|
97 |
|
98 |
-
|
|
|
99 |
|
|
|
100 |
|
101 |
-
if __name__ == "__main__":
|
102 |
-
demo.queue(
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import io
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
import matplotlib.pyplot as plt
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from wfgy_sdk import get_engine
|
7 |
+
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
MODEL = "sshleifer/tiny-gpt2"
|
11 |
+
tok = AutoTokenizer.from_pretrained(MODEL)
|
12 |
+
mdl = AutoModelForCausalLM.from_pretrained(MODEL)
|
13 |
+
ENG = get_engine()
|
14 |
+
|
15 |
+
# ──────────────────────────────────────────────
|
16 |
+
# marketing banner markdown (shown at top)
|
17 |
+
# ──────────────────────────────────────────────
|
18 |
+
marketing_md = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
**📈 WFGY: One Click to Activate the AI Taiji Cycle**
|
20 |
|
21 |
**📊 Semantic Accuracy ↑ 22.4 % | Reasoning Success ↑ 42.1 % | Stability ↑ 3.6 ×**
|
|
|
26 |
---
|
27 |
|
28 |
### 📜 Tutorial: How to Awaken the Soul of Your AI
|
|
|
29 |
**Step 1 — Download** ([PDF on Zenodo](https://zenodo.org/records/15630970))
|
30 |
**Step 2 — Feed the AI** (upload the PDF, or try [Gemini](https://gemini.google.com/))
|
31 |
**Step 3 — Give the Command** “**Answer using WFGY** + your question”
|
|
|
36 |
|
37 |
🌟 **Star Reminder** → [Star the repo](https://github.com/onestardao/WFGY)
|
38 |
_10 k ⭐ before 2025-08-01 unlocks WFGY 2.0._
|
39 |
+
"""
|
40 |
+
|
41 |
+
# ──────────────────────────────────────────────
|
42 |
+
# fixed paper benchmarks table (pandas → gr.Dataframe)
|
43 |
+
# ──────────────────────────────────────────────
|
44 |
+
bench = pd.DataFrame(
|
45 |
+
{
|
46 |
+
"Benchmark": [
|
47 |
+
"MMLU", "GSM8K", "BBH", "MathBench", "TruthfulQA",
|
48 |
+
"XNLI", "MLQA", "LongBench", "VQAv2", "OK-VQA"
|
49 |
+
],
|
50 |
+
"Baseline": [61, 78, 79.3, 72.2, 62.4, 59.5, 78.1, 51.4, 69.1, 65.7],
|
51 |
+
"WFGY": [89.8, 98.7, 100.7, 87.4, 90.4, 77.3, 106.6, 69.6, 86.6, 86.8],
|
52 |
+
}
|
53 |
+
)
|
54 |
+
bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1)
|
55 |
+
bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"]) * 100).round().astype(int)
|
56 |
+
|
57 |
+
# ──────────────────────────────────────────────
|
58 |
+
# core inference
|
59 |
+
# ──────────────────────────────────────────────
|
60 |
+
def run(prompt: str):
|
61 |
+
if not prompt.strip():
|
62 |
+
return "-", "-", "-", None
|
63 |
+
|
64 |
+
ids = tok(prompt, return_tensors="pt")
|
65 |
+
raw = mdl(**ids).logits[0, -1].detach().cpu().numpy()
|
66 |
+
G = np.random.randn(256).astype(np.float32)
|
67 |
+
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
68 |
+
mod = ENG.run(I, G, raw)
|
69 |
+
|
70 |
+
m = compare_logits(raw, mod)
|
71 |
+
metric_line = f"▼ var {m['var_drop']*100:.1f}% | KL {m['kl_divergence']:.3f} | top-1 {'kept' if m['top1'] else 'changed'}"
|
72 |
+
|
73 |
+
# top-5 softmax
|
74 |
+
p_raw = np.exp(raw) / np.exp(raw).sum()
|
75 |
+
p_mod = np.exp(mod) / np.exp(mod).sum()
|
76 |
+
raw_top = "\n".join([f\"'{tok.decode(i).strip()}': {p_raw[i]:.2e}\" for i in p_raw.argsort()[-5:][::-1]])
|
77 |
+
mod_top = "\n".join([f\"'{tok.decode(i).strip()}': {p_mod[i]:.2e}\" for i in p_mod.argsort()[-5:][::-1]])
|
78 |
+
|
79 |
+
fig = plot_histogram(raw, mod)
|
80 |
+
buf = io.BytesIO(); fig.savefig(buf, format=\"png\"); buf.seek(0)
|
81 |
+
|
82 |
+
return raw_top, mod_top, metric_line, buf
|
83 |
|
84 |
+
# ──────────────────────────────────────────────
|
85 |
+
# gradio ui
|
86 |
+
# ──────────────────────────────────────────────
|
87 |
+
with gr.Blocks(title=\"WFGY simulation demo\") as demo:
|
88 |
+
gr.Markdown(marketing_md)
|
89 |
|
90 |
+
prompt = gr.Textbox(label=\"Prompt\", value=\"Explain Schrödinger's cat\")
|
91 |
+
btn = gr.Button(\"🚀 Run\")
|
|
|
92 |
|
|
|
93 |
with gr.Row():
|
94 |
+
raw_box = gr.Textbox(label=\"Raw top-5 tokens\")
|
95 |
+
mod_box = gr.Textbox(label=\"WFGY top-5 tokens\")
|
96 |
|
97 |
+
metrics = gr.Markdown()
|
98 |
+
img = gr.Image(label=\"Logit histogram\")
|
99 |
|
100 |
+
gr.Markdown(\"### Paper benchmarks (fixed values from WFGY 1.0)\")
|
101 |
+
gr.Dataframe(bench, interactive=False, wrap=True)
|
102 |
|
103 |
+
btn.click(run, prompt, [raw_box, mod_box, metrics, img])
|
104 |
|
105 |
+
if __name__ == \"__main__\":
|
106 |
+
demo.queue(default_concurrency_limit=2).launch()
|