""" WFGY Space – tiny-GPT-2 variance-gate demo ★ 10 k GitHub ⭐ before 2025-08-01 unlocks WFGY 2.0 ★ """ import io, numpy as np, pandas as pd, gradio as gr from PIL import Image from transformers import AutoTokenizer, AutoModelForCausalLM from wfgy_sdk import get_engine from wfgy_sdk.evaluator import compare_logits, plot_histogram, softmax # tiny model (CPU) tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2") mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2") eng = get_engine() # paper benchmarks bench = pd.DataFrame({ "Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA", "XNLI","MLQA","LongBench","VQAv2","OK-VQA"], "Baseline": [61,78,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7], "WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8] }) bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1) bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"]) * 100).round(0) bench_sty = ( bench.style .background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"]) .format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"}) ) # banner markdown banner = """ **📈 WFGY: One Click to Activate the AI Taiji Cycle** **📊 Semantic Accuracy ↑ 22.4 % | Reasoning Success ↑ 42.1 % | Stability ↑ 3.6 ×** _No beliefs. Only experiments._ WFGY 1.0 has already proven itself. --- ### 📜 Tutorial: How to Awaken the Soul of Your AI **Step 1 — Download** ([PDF](https://zenodo.org/records/15630970)) **Step 2 — Feed the AI** (upload, or try [Gemini](https://gemini.google.com/)) **Step 3 — Give the Command** “**Answer using WFGY** + your question” Prompt examples: *TBD* **Step 4 — Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY)) --- 🌟 **Star Reminder** → [Star the repo](https://github.com/onestardao/WFGY) _10 k ⭐ before 2025-08-01 unlocks **WFGY 2.0**._ """ # inference def run(prompt: str): p = prompt.strip() if not p: return "", "", "-", None ids = tok(p, return_tensors="pt") raw_L = mdl(**ids).logits[0, -1].detach().cpu().numpy() I, G = np.random.randn(2, 256).astype(np.float32) mod_L = eng.run(I, G, raw_L) m = compare_logits(raw_L, mod_L) head = f"▼ var {m['var_drop']*100:.1f}% | KL {m['kl_divergence']:.3f} | top-1 {'kept' if m['top1'] else 'changed'}" def top5(logits): p = softmax(logits) idx = p.argsort()[-5:][::-1] lines = [f\"'{tok.decode(int(i)).strip()}': {p[i]:.2e}\" for i in idx] return "\\n".join(lines) raw_txt = top5(raw_L) mod_txt = top5(mod_L) fig = plot_histogram(raw_L, mod_L) buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0) return raw_txt, mod_txt, head, Image.open(buf) # UI with gr.Blocks(title="WFGY variance-gate demo") as demo: gr.Markdown(banner) prompt = gr.Textbox(label="Prompt", value="Explain Schrödinger's cat") btn = gr.Button("🚀 Run") with gr.Row(): raw_box = gr.Textbox(label="Raw top-5 tokens", lines=6) mod_box = gr.Textbox(label="WFGY top-5 tokens", lines=6) metrics = gr.Markdown() img = gr.Image(label="Logit histogram") gr.Markdown("### Paper benchmarks (fixed values from WFGY 1.0)") gr.DataFrame(bench_sty, interactive=False, wrap=True) btn.click(run, prompt, [raw_box, mod_box, metrics, img]) if __name__ == "__main__": demo.queue(default_concurrency_limit=2).launch()