|
import os |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "false" |
|
|
|
app = FastAPI() |
|
|
|
|
|
model_name = "OnlyCheeini/greesychat-turbo" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to("cuda") |
|
|
|
class OpenAIRequest(BaseModel): |
|
model: str |
|
prompt: str |
|
max_tokens: int = 64 |
|
temperature: float = 0.7 |
|
top_p: float = 0.9 |
|
|
|
class OpenAIResponse(BaseModel): |
|
choices: list |
|
|
|
@app.post("/v1/completions", response_model=OpenAIResponse) |
|
async def generate_text(request: OpenAIRequest): |
|
if request.model != model_name: |
|
raise HTTPException(status_code=400, detail="Model not found") |
|
|
|
inputs = tokenizer(request.prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate( |
|
**inputs, |
|
max_length=inputs['input_ids'].shape[1] + request.max_tokens, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
) |
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return OpenAIResponse(choices=[{"text": generated_text}]) |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |