MAGInet_demo / app.py
OnsAouedi's picture
Update app.py
3d84896 verified
raw
history blame
33 kB
import torch
import torch.nn as nn
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
import os
import logging
import joblib
from tqdm import tqdm
import tempfile
import json
from math import radians, cos, sin, asin, sqrt, atan2, degrees
import time
import functools
# ============================
# Configure Logging
# ============================
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def add_time_decimal_feature(df):
"""
Add 'time_decimal' feature by combining 'hour' and 'minutes'.
:param df: DataFrame with 'hour' and 'minutes' columns.
:return: DataFrame with 'time_decimal' and without 'hour' and 'minutes'.
"""
if 'time_decimal' in df.columns:
logging.info("'time_decimal' feature already exists. Skipping creation.")
return df
elif 'hour' in df.columns and 'minutes' in df.columns:
logging.info("Adding 'time_decimal' feature...")
df['time_decimal'] = df['hour'] + df['minutes'] / 60.0
df = df.drop(columns=['hour', 'minutes']) # Drop 'hour' and 'minutes' after creation
logging.info("'time_decimal' feature added.")
else:
logging.warning("Neither 'time_decimal' nor 'hour' and 'minutes' columns found. Cannot create 'time_decimal' feature.")
raise ValueError("Input data must contain 'time_decimal' or both 'hour' and 'minutes' columns.")
return df
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great-circle distance between two points on the Earth.
:param lon1: Longitude of point 1 (in decimal degrees)
:param lat1: Latitude of point 1 (in decimal degrees)
:param lon2: Longitude of point 2 (in decimal degrees)
:param lat2: Latitude of point 2 (in decimal degrees)
:return: Distance in kilometers
"""
# Convert decimal degrees to radians
lon1_rad, lat1_rad, lon2_rad, lat2_rad = map(np.radians, [lon1, lat1, lon2, lat2])
# Haversine formula
dlon = lon2_rad - lon1_rad
dlat = lat2_rad - lat1_rad
a = np.sin(dlat/2)**2 + np.cos(lat1_rad) * np.cos(lat2_rad) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
r = 6371 # Radius of Earth in kilometers
return c * r
def calculate_bearing(lon1, lat1, lon2, lat2):
"""
Calculate the bearing between two points.
:param lon1: Longitude of point 1 (in decimal degrees)
:param lat1: Latitude of point 1 (in decimal degrees)
:param lon2: Longitude of point 2 (in decimal degrees)
:param lat2: Latitude of point 2 (in decimal degrees)
:return: Bearing in degrees
"""
# Convert decimal degrees to radians
lon1_rad, lat1_rad, lon2_rad, lat2_rad = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2_rad - lon1_rad
x = sin(dlon) * cos(lat2_rad)
y = cos(lat1_rad) * sin(lat2_rad) - (sin(lat1_rad) * cos(lat2_rad) * cos(dlon))
initial_bearing = atan2(x, y)
# Convert from radians to degrees and normalize
initial_bearing = degrees(initial_bearing)
compass_bearing = (initial_bearing + 360) % 360
return compass_bearing
def angular_divergence(bearing1, bearing2):
"""
Calculate the smallest angle difference between two bearings.
:param bearing1: First bearing in degrees
:param bearing2: Second bearing in degrees
:return: Angular divergence in degrees
"""
diff = abs(bearing1 - bearing2) % 360
return min(diff, 360 - diff)
def denormalize(scaled_lat, scaled_lon, scaler, lat_idx, lon_idx):
"""
Denormalize latitude and longitude using the scaler's parameters.
:param scaled_lat: Scaled latitude values (numpy array).
:param scaled_lon: Scaled longitude values (numpy array).
:param scaler: The scaler object used for normalization.
:param lat_idx: Index of 'latitude_degrees' in the scaler's feature list.
:param lon_idx: Index of 'longitude_degrees' in the scaler's feature list.
:return: Tuple of (denormalized_lat, denormalized_lon).
"""
lat_min = scaler.data_min_[lat_idx]
lat_max = scaler.data_max_[lat_idx]
lon_min = scaler.data_min_[lon_idx]
lon_max = scaler.data_max_[lon_idx]
denorm_lat = scaled_lat * (lat_max - lat_min) + lat_min
denorm_lon = scaled_lon * (lon_max - lon_min) + lon_min
return denorm_lat, denorm_lon
def create_dataset_grouped_by_mmsi(df_scaled, seq_len, forecast_horizon, features_to_scale, future_features):
"""
Create input and output sequences grouped by original MMSI.
Returns scaled last known positions.
"""
Xs, ys, mmsis = [], [], []
last_known_positions_scaled = []
grouped = df_scaled.groupby('original_mmsi')
for mmsi, group in tqdm(grouped, desc="Creating sequences"):
if len(group) >= seq_len + forecast_horizon:
for i in range(len(group) - seq_len - forecast_horizon + 1):
# Select scaled features for the sequence
sequence = group.iloc[i:(i + seq_len)][features_to_scale].to_numpy()
# Future positions to predict (scaled)
future_positions = group[['latitude_degrees', 'longitude_degrees']].iloc[i + seq_len:i + seq_len + forecast_horizon].to_numpy()
# Future features
future_feature_values = group[future_features].iloc[i + seq_len].values
future_feature_array = np.tile(future_feature_values, (seq_len, 1))
# Combine sequence with future features
sequence_with_future_features = np.hstack((sequence, future_feature_array))
Xs.append(sequence_with_future_features)
ys.append(future_positions)
mmsis.append(mmsi)
# Store last known positions (scaled)
last_lat_scaled = group['latitude_degrees'].iloc[i + seq_len - 1]
last_lon_scaled = group['longitude_degrees'].iloc[i + seq_len - 1]
last_known_positions_scaled.append((last_lat_scaled, last_lon_scaled))
return np.array(Xs, dtype=np.float32), np.array(ys, dtype=np.float32), np.array(mmsis), last_known_positions_scaled
# ============================
# Model Definitions
# ============================
class LSTMModelTeacher(nn.Module):
def __init__(self, in_dim, hidden_dim, forecast_horizon, n_layers=7, dropout=0.2):
"""
Teacher LSTM Model.
:param in_dim: Number of input features.
:param hidden_dim: Number of hidden units.
:param forecast_horizon: Number of future steps to predict.
:param n_layers: Number of LSTM layers.
:param dropout: Dropout rate.
"""
super(LSTMModelTeacher, self).__init__()
self.forecast_horizon = forecast_horizon # Store as an instance attribute
self.embedding = nn.Linear(in_dim, hidden_dim)
self.lstm = nn.LSTM(hidden_dim, hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True)
self.fc = nn.Linear(hidden_dim, forecast_horizon * 2)
def forward(self, x):
x = self.embedding(x)
x, _ = self.lstm(x)
x = self.fc(x[:, -1, :]) # Use the last timestep for prediction
x = x.view(-1, self.forecast_horizon, 2) # Shape: (batch_size, forecast_horizon, 2)
return x
class LSTMModelStudent(nn.Module):
def __init__(self, in_dim, hidden_dim, forecast_horizon, n_layers=3, dropout=0.2):
"""
Student LSTM Model.
:param in_dim: Number of input features.
:param hidden_dim: Number of hidden units.
:param forecast_horizon: Number of future steps to predict.
:param n_layers: Number of LSTM layers.
:param dropout: Dropout rate.
"""
super(LSTMModelStudent, self).__init__()
self.forecast_horizon = forecast_horizon # Store as an instance attribute
self.embedding = nn.Linear(in_dim, hidden_dim)
self.lstm = nn.LSTM(hidden_dim, hidden_dim, num_layers=n_layers, dropout=dropout, batch_first=True)
self.fc = nn.Linear(hidden_dim, forecast_horizon * 2)
def forward(self, x):
x = self.embedding(x)
x, _ = self.lstm(x)
x = self.fc(x[:, -1, :]) # Use the last timestep for prediction
x = x.view(-1, self.forecast_horizon, 2) # Shape: (batch_size, forecast_horizon, 2)
return x
# ============================
# Model Loading Functions
# ============================
def load_models(model_paths):
"""
Load teacher, student, and cargo vessel models, including submodels for North, Mid, and South areas.
:param model_paths: Dictionary containing paths to the models.
:return: Dictionary of loaded models.
"""
models = {}
logging.info("Loading Teacher model...")
# Teacher model input dimension
teacher_in_dim = 15 # Features including 'future_hour_feature' (time_decimal)
# Load Teacher Model (Global)
teacher = LSTMModelTeacher(in_dim=teacher_in_dim, hidden_dim=200, forecast_horizon=1, n_layers=7, dropout=0.2)
teacher.load_state_dict(torch.load(model_paths['teacher'], map_location=torch.device('cpu')))
teacher.eval()
models['Teacher'] = teacher
logging.info("Teacher model loaded successfully.")
logging.info("Loading Student North model...")
# Student North model input dimension is the same as teacher
student_north = LSTMModelStudent(in_dim=teacher_in_dim, hidden_dim=200, forecast_horizon=1, n_layers=3, dropout=0.2)
student_north.load_state_dict(torch.load(model_paths['student_north'], map_location=torch.device('cpu')))
student_north.eval()
models['Student_North'] = student_north
logging.info("Student North model loaded successfully.")
logging.info("Loading Student Mid model...")
student_mid = LSTMModelStudent(in_dim=teacher_in_dim, hidden_dim=200, forecast_horizon=1, n_layers=3, dropout=0.2)
student_mid.load_state_dict(torch.load(model_paths['student_mid'], map_location=torch.device('cpu')))
student_mid.eval()
models['Student_Mid'] = student_mid
logging.info("Student Mid model loaded successfully.")
logging.info("Loading Student South model...")
student_south = LSTMModelStudent(in_dim=teacher_in_dim, hidden_dim=200, forecast_horizon=1, n_layers=3, dropout=0.2)
student_south.load_state_dict(torch.load(model_paths['student_south'], map_location=torch.device('cpu')))
student_south.eval()
models['Student_South'] = student_south
logging.info("Student South model loaded successfully.")
# Load Cargo Vessel model
logging.info("Loading Cargo Vessel model...")
# Cargo Vessel model input dimension
cargo_in_dim = 6 + 3 # + 3 future features ('day', 'month', 'time_decimal')
cargo_model = LSTMModelTeacher(in_dim=cargo_in_dim, hidden_dim=200, forecast_horizon=1, n_layers=10, dropout=0.2)
cargo_model.load_state_dict(torch.load(model_paths['cargo_vessel'], map_location=torch.device('cpu')))
cargo_model.eval()
models['Cargo_Vessel'] = cargo_model
logging.info("Cargo Vessel model loaded successfully.")
return models
def load_scalers(scaler_paths):
"""
Load scalers for each model.
:param scaler_paths: Dictionary containing paths to the scaler files.
:return: Dictionary of loaded scalers.
"""
loaded_scalers = {}
for model_name, scaler_path in scaler_paths.items():
if os.path.exists(scaler_path):
loaded_scalers[model_name] = joblib.load(scaler_path)
logging.info(f"Loaded scaler for {model_name} from '{scaler_path}'.")
else:
logging.error(f"Scaler file for {model_name} not found at '{scaler_path}'.")
raise FileNotFoundError(f"Scaler file for {model_name} not found at '{scaler_path}'. Please provide the correct path.")
return loaded_scalers
def determine_subarea(df):
"""
Determine the sub-area (North, Mid, South) based on latitude and longitude ranges.
:param df: DataFrame containing 'latitude_degrees' and 'longitude_degrees'.
:return: String indicating the sub-area.
"""
# Define sub-area boundaries
subareas = {
'North': {'lat_min': 30, 'lat_max': 60, 'lon_min': -80, 'lon_max': -10},
'Mid': {'lat_min': 0, 'lat_max': 30, 'lon_min': -80, 'lon_max': 10},
'South': {'lat_min': -80, 'lat_max': 0, 'lon_min': -60, 'lon_max': 20}
}
# Count the number of data points in each sub-area
counts = {}
for area, bounds in subareas.items():
count = df[
(df['latitude_degrees'] >= bounds['lat_min']) & (df['latitude_degrees'] <= bounds['lat_max']) &
(df['longitude_degrees'] >= bounds['lon_min']) & (df['longitude_degrees'] <= bounds['lon_max'])
].shape[0]
counts[area] = count
logging.info(f"Sub-area '{area}': {count} records.")
# Determine the sub-area with the maximum count
predominant_subarea = max(counts, key=counts.get)
logging.info(f"Predominant sub-area determined: {predominant_subarea}")
# If no data points fall into any sub-area, default to Teacher
if counts[predominant_subarea] == 0:
logging.warning("No data points found in any sub-area. Defaulting to Teacher model.")
return 'Teacher'
return predominant_subarea
def select_model(models, subarea, model_choice):
"""
Select the appropriate model based on the sub-area and model choice.
:param models: Dictionary of loaded models.
:param subarea: String indicating the sub-area.
:param model_choice: String indicating the selected model.
:return: Tuple of (selected_model, selected_model_name).
"""
if model_choice == "Auto-Select":
if subarea in ['North', 'Mid', 'South']:
selected_model = models.get(f'Student_{subarea}')
selected_model_name = f'Student_{subarea}'
else:
selected_model = models.get('Teacher')
selected_model_name = 'Teacher'
else:
selected_model = models.get(model_choice)
selected_model_name = model_choice
logging.info(f"Selected model: {selected_model_name}")
return selected_model, selected_model_name
# ============================
# Evaluation Metrics Calculation
# ============================
def calculate_classic_metrics(y_true, y_pred):
"""
Calculate MAE, MSE, and RMSE directly on latitude/longitude pairs.
:param y_true: Ground truth positions (numpy array of shape (num_samples, 2)).
:param y_pred: Predicted positions (numpy array of shape (num_samples, 2)).
:return: Dictionary containing the classic metrics.
"""
# Calculate MAE
mae = mean_absolute_error(y_true, y_pred)
# Calculate MSE
mse = mean_squared_error(y_true, y_pred)
# Calculate RMSE
rmse = np.sqrt(mse)
classic_metrics = {
'MAE (degrees)': mae,
'MSE (degrees^2)': mse,
'RMSE (degrees)': rmse
}
logging.info(f"Calculated classic metrics: {classic_metrics}")
return classic_metrics
def calculate_distance_metrics(y_true, y_pred):
"""
Calculate metrics based on distance (in kilometers).
:param y_true: Ground truth positions (numpy array of shape (num_samples, 2)).
:param y_pred: Predicted positions (numpy array of shape (num_samples, 2)).
:return: Dictionary containing the distance-based metrics.
"""
# Calculate haversine distance between predicted and true positions
distances = np.array([
haversine(y_true[i, 1], y_true[i, 0], y_pred[i, 1], y_pred[i, 0])
for i in range(len(y_true))
]) # Assuming columns are [latitude, longitude]
# Calculate MAE
mae = np.mean(np.abs(distances))
# Calculate MSE
mse = np.mean(np.square(distances))
# Calculate RMSE
rmse = np.sqrt(mse)
# Calculate RSE (Relative Squared Error)
variance = np.var(distances)
rse = mse / variance if variance != 0 else float('inf')
metrics = {
'MAE (km)': mae,
'MSE (km^2)': mse,
'RMSE (km)': rmse,
'RSE': rse
}
logging.info(f"Calculated distance metrics: {metrics}")
return metrics
# ============================
# Classical Metrics Prediction
# ============================
def classical_prediction(file_path, model_choice, min_mmsi, max_mmsi, models, loaded_scalers):
"""
Preprocess the input CSV and make predictions using the selected model.
Calculate classical evaluation metrics and include inference time.
"""
try:
logging.info("Starting classical prediction...")
# Load the uploaded CSV file and filter based on MMSI
logging.info("Loading uploaded CSV file...")
df = pd.read_csv(file_path, delimiter=',')
logging.info(f"Uploaded CSV file loaded with {df.shape[0]} records.")
df = df[(df['mmsi'] >= min_mmsi) & (df['mmsi'] <= max_mmsi)]
if df.empty:
error_message = "No data available after applying MMSI filters."
logging.error(error_message)
return {"error": error_message}, None, None, None
# Select the appropriate model and scaler
if model_choice == "Auto-Select":
temp_df = df.copy()
subarea = determine_subarea(temp_df)
selected_model, selected_model_name = select_model(models, subarea, model_choice)
scaler = loaded_scalers[selected_model_name]
else:
if model_choice in models:
selected_model = models[model_choice]
selected_model_name = model_choice
scaler = loaded_scalers[selected_model_name]
else:
error_message = f"Selected model '{model_choice}' is not available."
logging.error(error_message)
return {"error": error_message}, None, None, None
logging.info(f"Using scaler for model: {selected_model_name}")
# Adjust features_to_scale based on the selected model
if selected_model_name == 'Cargo_Vessel':
features_to_scale = [
"mmsi", "latitude_degrees", "longitude_degrees",
"day", "month", "time_decimal" # Removed 'ship_type'
]
future_features = ['day', 'month', 'time_decimal']
else:
features_to_scale = [
"mmsi", "sog_kt", "latitude_degrees", "longitude_degrees", "cog_degrees",
"dimension_a_m", "dimension_b_m", "dimension_c_m", "dimension_d_m",
"ship_type", "day", "month", "year", "time_decimal"
]
future_features = ['time_decimal']
# Check if the necessary columns exist
expected_columns = features_to_scale
if not all(col in df.columns for col in expected_columns):
error_message = (
f"Input data does not have the correct columns.\n"
f"Expected columns for {selected_model_name}: {expected_columns}\n"
f"Got columns: {list(df.columns)}"
)
logging.error(error_message)
return {"error": error_message}, None, None, None
logging.info("Input CSV has the correct columns.")
if selected_model_name != 'Cargo_Vessel':
df = add_time_decimal_feature(df)
else:
if 'time_decimal' not in df.columns:
error_message = "Cargo model requires 'time_decimal' column."
logging.error(error_message)
return {"error": error_message}, None, None, None
# Normalize the data
logging.info("Normalizing the data...")
X_new = df[features_to_scale]
X_scaled = scaler.transform(X_new)
df_scaled = pd.DataFrame(X_scaled, columns=features_to_scale, index=df.index)
df_scaled['original_mmsi'] = df['mmsi']
# Create sequences and get last known positions (scaled)
seq_len = 24
forecast_horizon = 1
X, y, mmsi_seq, last_known_positions_scaled = create_dataset_grouped_by_mmsi(
df_scaled, seq_len, forecast_horizon, features_to_scale, future_features
)
if X.size == 0:
error_message = "Not enough data to create sequences."
logging.error(error_message)
return {"error": error_message}, None, None, None
logging.info(f"Created {X.shape[0]} sequences.")
# Inference
logging.info("Starting model inference...")
test_dataset = torch.utils.data.TensorDataset(torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32))
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
all_predictions = []
all_y_true = []
start_time = time.time() # Start inference time tracking
with torch.no_grad():
for batch in test_loader:
X_batch, y_batch = batch
predictions = selected_model(X_batch).cpu().numpy()
all_predictions.append(predictions)
all_y_true.append(y_batch.numpy())
inference_time = time.time() - start_time # End inference time
all_predictions = np.concatenate(all_predictions, axis=0)
y_true = np.concatenate(all_y_true, axis=0)
y_pred = all_predictions
logging.info(f"Inference completed in {inference_time:.2f} seconds.")
# Denormalize predictions and real values
lat_idx = features_to_scale.index("latitude_degrees")
lon_idx = features_to_scale.index("longitude_degrees")
pred_lat, pred_lon = denormalize(y_pred[:, :, 0], y_pred[:, :, 1], scaler, lat_idx, lon_idx)
true_lat, true_lon = denormalize(y_true[:, :, 0], y_true[:, :, 1], scaler, lat_idx, lon_idx)
# Denormalize last known positions
last_lat_scaled = np.array([pos[0] for pos in last_known_positions_scaled])
last_lon_scaled = np.array([pos[1] for pos in last_known_positions_scaled])
last_lat_denorm, last_lon_denorm = denormalize(
last_lat_scaled, last_lon_scaled, scaler, lat_idx, lon_idx
)
# Squeeze arrays to ensure they are 1-dimensional
pred_lat = pred_lat.squeeze()
pred_lon = pred_lon.squeeze()
true_lat = true_lat.squeeze()
true_lon = true_lon.squeeze()
last_lat_denorm = last_lat_denorm.squeeze()
last_lon_denorm = last_lon_denorm.squeeze()
mmsi_seq = mmsi_seq.squeeze()
# Calculate the classic evaluation metrics
y_true_pairs = np.column_stack((true_lat, true_lon))
y_pred_pairs = np.column_stack((pred_lat, pred_lon))
classic_metrics = calculate_classic_metrics(y_true=y_true_pairs, y_pred=y_pred_pairs)
classic_metrics['Inference Time (seconds)'] = inference_time # Include inference time
# Calculate error in Km for each prediction
logging.info("Calculating error in kilometers for each prediction...")
error_km = np.array([
haversine(pred_lon[i], pred_lat[i], true_lon[i], true_lat[i])
for i in range(len(pred_lat))
])
# Prepare metrics and output CSV
metrics_df = pd.DataFrame([classic_metrics])
metrics_json = metrics_df.to_json(orient="records")
metrics_json = json.loads(metrics_json)[0]
# Prepare predicted and real positions DataFrame, including error in Km
predicted_df = pd.DataFrame({
'MMSI': mmsi_seq[:len(y_pred)],
'Last Known Latitude': last_lat_denorm,
'Last Known Longitude': last_lon_denorm,
'Predicted Latitude': pred_lat,
'Predicted Longitude': pred_lon,
'Real Latitude': true_lat,
'Real Longitude': true_lon,
'Error (Km)': error_km
})
# Save predictions as CSV
with tempfile.NamedTemporaryFile(delete=False, suffix='.csv', mode='w', newline='') as tmp_positions_file:
predicted_df.to_csv(tmp_positions_file, index=False)
positions_csv_path = tmp_positions_file.name
logging.info("Classical prediction completed.")
return metrics_json, positions_csv_path, inference_time, None
except Exception as e:
logging.error(f"An error occurred: {str(e)}")
return None, None, None, str(e)
# ============================
# Abnormal Behavior Detection
# ============================
def abnormal_behavior_detection(prediction_file_path, alpha=0.5, threshold=10.0):
"""
Detect abnormal behavior based on angular divergence and distance difference.
Accepts a CSV file containing real and predicted positions.
"""
try:
logging.info("Starting abnormal behavior detection...")
# Load the CSV file containing real and predicted positions
logging.info("Loading prediction CSV file...")
df = pd.read_csv(prediction_file_path)
logging.info(f"Prediction CSV file loaded with {df.shape[0]} records.")
# Check if necessary columns exist
expected_columns = [
'MMSI',
'Last Known Latitude',
'Last Known Longitude',
'Predicted Latitude',
'Predicted Longitude',
'Real Latitude',
'Real Longitude'
]
if not all(col in df.columns for col in expected_columns):
error_message = (
f"Input data does not have the correct columns.\n"
f"Expected columns: {expected_columns}\n"
f"Got columns: {list(df.columns)}"
)
logging.error(error_message)
return None, error_message
# Extract necessary data
mmsi_seq = df['MMSI'].values
last_lat_flat = df['Last Known Latitude'].values
last_lon_flat = df['Last Known Longitude'].values
pred_lat_flat = df['Predicted Latitude'].values
pred_lon_flat = df['Predicted Longitude'].values
true_lat_flat = df['Real Latitude'].values
true_lon_flat = df['Real Longitude'].values
# Calculate bearings
logging.info("Calculating bearings for predictions and real values...")
bearings_pred = [
calculate_bearing(last_lon_flat[i], last_lat_flat[i], pred_lon_flat[i], pred_lat_flat[i])
for i in range(len(pred_lat_flat))
]
bearings_true = [
calculate_bearing(last_lon_flat[i], last_lat_flat[i], true_lon_flat[i], true_lat_flat[i])
for i in range(len(true_lat_flat))
]
# Calculate angular divergence Δθ
logging.info("Calculating angular divergence (Δθ)...")
delta_theta = [
angular_divergence(bearings_pred[i], bearings_true[i])
for i in range(len(bearings_pred))
]
# Calculate distance difference Δd
logging.info("Calculating distance difference (Δd)...")
delta_d = [
haversine(last_lon_flat[i], last_lat_flat[i], pred_lon_flat[i], pred_lat_flat[i]) -
haversine(last_lon_flat[i], last_lat_flat[i], true_lon_flat[i], true_lat_flat[i])
for i in range(len(pred_lat_flat))
]
# Compute the score
logging.info("Computing the abnormal behavior score...")
score = [alpha * abs(dd) + (1 - alpha) * dt for dd, dt in zip(delta_d, delta_theta)]
# Determine abnormal behavior
logging.info("Determining abnormal behavior based on the score...")
abnormal_behavior = [1 if s >= threshold else 0 for s in score] # 1: Abnormal, 0: Normal
# Create DataFrame for saving
abnormal_behavior_df = pd.DataFrame({
'MMSI': mmsi_seq,
'Last Known Latitude': last_lat_flat,
'Last Known Longitude': last_lon_flat,
'Predicted Latitude': pred_lat_flat,
'Predicted Longitude': pred_lon_flat,
'Real Latitude': true_lat_flat,
'Real Longitude': true_lon_flat,
'Distance Difference (Δd) [km]': delta_d,
'Angular Divergence (Δθ) [degrees]': delta_theta,
'Score (αΔd + (1-α)Δθ)': score,
'Abnormal Behavior (1=Abnormal, 0=Normal)': abnormal_behavior
})
# Save abnormal behavior dataset as CSV
with tempfile.NamedTemporaryFile(delete=False, suffix='.csv', mode='w', newline='') as tmp_abnormal_file:
abnormal_behavior_df.to_csv(tmp_abnormal_file, index=False)
abnormal_csv_path = tmp_abnormal_file.name
logging.info("Abnormal behavior detection completed.")
return abnormal_csv_path, None
except Exception as e:
logging.error(f"An error occurred: {str(e)}")
return None, str(e)
# ============================
# Define Gradio Interface
# ============================
def main():
model_paths = {
'teacher': 'LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256/horizon_data_LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256_seq_24/run_1/best_model.pth',
'student_north': 'LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256_KD_North/horizon1_data_LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256_KD_North_seq_24/run_1/best_model.pth',
'student_mid': 'LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256_KD_Mid/horizon1_data_LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256_KD_Mid_seq_24/run_1/best_model.pth',
'student_south': 'LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256_KD_South/horizon1_data_LSTM_whole_atlantic_horizon1_with_time_decimal_input_batch256_KD_South_seq_24/run_1/best_model.pth',
'cargo_vessel': 'LSTMModel_cargo_horizon1_with_month_day_time_input_batch256_cleaned/horizon_data_LSTMModel_cargo_horizon1_with_month_day_time_input_batch256_cleaned_seq_24/run_1/best_model.pth'
}
scaler_paths = {
'Teacher': 'scaler_train_wholedata_up.joblib',
'Student_North': 'scaler_train_North_up.joblib',
'Student_Mid': 'scaler_train_Mid_up.joblib',
'Student_South': 'scaler_train_South_up.joblib',
'Cargo_Vessel': 'scaler_features_cargo_cleaned.joblib'
}
logging.info("Loading models and scalers...")
models = load_models(model_paths)
loaded_scalers = load_scalers(scaler_paths)
logging.info("All models and scalers loaded successfully.")
# Define the Gradio components for classical prediction tab
classical_tab = gr.Interface(
fn=functools.partial(classical_prediction, models=models, loaded_scalers=loaded_scalers),
inputs=[
gr.File(label="Upload CSV File", type='filepath'),
gr.Dropdown(
choices=["Auto-Select", "Teacher", "Student_North", "Student_Mid", "Student_South", "Cargo_Vessel"],
value="Auto-Select",
label="Choose Model"
),
gr.Number(label="Min MMSI", value=0),
gr.Number(label="Max MMSI", value=999999999)
],
outputs=[
gr.JSON(label="Classical Metrics (Degrees)"),
gr.File(label="Download Predicted & Real Positions CSV"),
gr.Number(label="Inference Time (seconds)"),
gr.Textbox(label="Error Message", lines=2, visible=False)
],
title="Classical Prediction & Metrics",
description=(
"Upload a CSV file and select a model to get classical evaluation metrics such as MAE, MSE, RMSE. "
"The inference time is also provided."
)
)
# Define the Gradio components for abnormal behavior detection tab
abnormal_tab = gr.Interface(
fn=functools.partial(abnormal_behavior_detection),
inputs=[
gr.File(label="Upload Predicted Positions CSV", type='filepath'),
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label="Alpha (α)"),
gr.Number(label="Threshold", value=10.0)
],
outputs=[
gr.File(label="Download Abnormal Behavior CSV"),
gr.Textbox(label="Error Message", lines=2, visible=False)
],
title="Abnormal Behavior Detection",
description=(
"Upload the CSV file containing real and predicted positions from the Classical Prediction tab. "
"Adjust the Alpha and Threshold parameters to compute abnormal behavior."
)
)
# Combine the two tabs using Gradio Tabs component
with gr.Blocks() as demo:
gr.Markdown("# Vessel Trajectory Prediction and Abnormal Behavior Detection")
with gr.Tabs():
with gr.TabItem("Classical Prediction"):
classical_tab.render()
with gr.TabItem("Abnormal Behavior Detection"):
abnormal_tab.render()
# Launch the Gradio interface
logging.info("Launching Gradio interface...")
demo.launch()
logging.info("Gradio interface launched successfully.")
# Run the app
if __name__ == "__main__":
main()