OnsAouedi commited on
Commit
015efaf
·
verified ·
1 Parent(s): 7b75b81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -8
app.py CHANGED
@@ -20,9 +20,7 @@ import functools
20
 
21
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
22
 
23
- # ============================
24
- # Helper Functions
25
- # ============================
26
 
27
  def add_time_decimal_feature(df):
28
  """
@@ -274,9 +272,6 @@ def load_scalers(scaler_paths):
274
  raise FileNotFoundError(f"Scaler file for {model_name} not found at '{scaler_path}'. Please provide the correct path.")
275
  return loaded_scalers
276
 
277
- # ============================
278
- # Model Selection Logic
279
- # ============================
280
 
281
  def determine_subarea(df):
282
  """
@@ -471,7 +466,7 @@ def classical_prediction(file_path, model_choice, min_mmsi, max_mmsi, models, lo
471
 
472
  logging.info("Input CSV has the correct columns.")
473
 
474
- # Check and add 'time_decimal' if necessary
475
  if selected_model_name != 'Cargo_Vessel':
476
  df = add_time_decimal_feature(df)
477
  else:
@@ -517,7 +512,7 @@ def classical_prediction(file_path, model_choice, min_mmsi, max_mmsi, models, lo
517
  all_predictions.append(predictions)
518
  all_y_true.append(y_batch.numpy())
519
 
520
- inference_time = time.time() - start_time # End inference time tracking
521
 
522
  all_predictions = np.concatenate(all_predictions, axis=0)
523
  y_true = np.concatenate(all_y_true, axis=0)
 
20
 
21
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
22
 
23
+
 
 
24
 
25
  def add_time_decimal_feature(df):
26
  """
 
272
  raise FileNotFoundError(f"Scaler file for {model_name} not found at '{scaler_path}'. Please provide the correct path.")
273
  return loaded_scalers
274
 
 
 
 
275
 
276
  def determine_subarea(df):
277
  """
 
466
 
467
  logging.info("Input CSV has the correct columns.")
468
 
469
+
470
  if selected_model_name != 'Cargo_Vessel':
471
  df = add_time_decimal_feature(df)
472
  else:
 
512
  all_predictions.append(predictions)
513
  all_y_true.append(y_batch.numpy())
514
 
515
+ inference_time = time.time() - start_time # End inference time
516
 
517
  all_predictions = np.concatenate(all_predictions, axis=0)
518
  y_true = np.concatenate(all_y_true, axis=0)