Ankan Ghosh
commited on
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +305 -0
- click.wav +0 -0
- input-video.mp4 +3 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
input-video.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
try:
|
9 |
+
from pygame import mixer
|
10 |
+
|
11 |
+
mixer_init = True
|
12 |
+
except ModuleNotFoundError:
|
13 |
+
mixer = None
|
14 |
+
mixer_init = False
|
15 |
+
|
16 |
+
# ------------------------------------------------------------------------------
|
17 |
+
# 1. Initializations.
|
18 |
+
# ------------------------------------------------------------------------------
|
19 |
+
|
20 |
+
# Initialize counter for the number of blinks detected.
|
21 |
+
BLINK = 0
|
22 |
+
|
23 |
+
# Model file paths.
|
24 |
+
MODEL_PATH = "./model/res10_300x300_ssd_iter_140000.caffemodel"
|
25 |
+
CONFIG_PATH = "./model/deploy.prototxt"
|
26 |
+
LBF_MODEL = "./model/lbfmodel.yaml"
|
27 |
+
|
28 |
+
# Create a face detector network instance.
|
29 |
+
net = cv2.dnn.readNetFromCaffe(CONFIG_PATH, MODEL_PATH)
|
30 |
+
|
31 |
+
# Create the landmark detector instance.
|
32 |
+
landmarkDetector = cv2.face.createFacemarkLBF()
|
33 |
+
landmarkDetector.loadModel(LBF_MODEL)
|
34 |
+
|
35 |
+
# ------------------------------------------------------------------------------
|
36 |
+
# 2. Function definitions.
|
37 |
+
# ------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
|
40 |
+
def detect_faces(image, detection_threshold=0.70):
|
41 |
+
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), [104, 117, 123])
|
42 |
+
net.setInput(blob)
|
43 |
+
detections = net.forward()
|
44 |
+
|
45 |
+
faces = []
|
46 |
+
img_h = image.shape[0]
|
47 |
+
img_w = image.shape[1]
|
48 |
+
|
49 |
+
for detection in detections[0][0]:
|
50 |
+
if detection[2] >= detection_threshold:
|
51 |
+
left = detection[3] * img_w
|
52 |
+
top = detection[4] * img_h
|
53 |
+
right = detection[5] * img_w
|
54 |
+
bottom = detection[6] * img_h
|
55 |
+
|
56 |
+
face_w = right - left
|
57 |
+
face_h = bottom - top
|
58 |
+
|
59 |
+
face_roi = (left, top, face_w, face_h)
|
60 |
+
faces.append(face_roi)
|
61 |
+
|
62 |
+
return np.array(faces).astype(int)
|
63 |
+
|
64 |
+
|
65 |
+
def get_primary_face(faces, frame_h, frame_w):
|
66 |
+
primary_face_index = None
|
67 |
+
face_height_max = 0
|
68 |
+
for idx in range(len(faces)):
|
69 |
+
face = faces[idx]
|
70 |
+
x1 = face[0]
|
71 |
+
y1 = face[1]
|
72 |
+
x2 = x1 + face[2]
|
73 |
+
y2 = y1 + face[3]
|
74 |
+
if x1 > frame_w or y1 > frame_h or x2 > frame_w or y2 > frame_h:
|
75 |
+
continue
|
76 |
+
if x1 < 0 or y1 < 0 or x2 < 0 or y2 < 0:
|
77 |
+
continue
|
78 |
+
|
79 |
+
# Prioritize the face with the maximum height.
|
80 |
+
if face[3] > face_height_max:
|
81 |
+
primary_face_index = idx
|
82 |
+
face_height_max = face[3]
|
83 |
+
|
84 |
+
if primary_face_index is not None:
|
85 |
+
primary_face = faces[primary_face_index]
|
86 |
+
else:
|
87 |
+
primary_face = None
|
88 |
+
|
89 |
+
return primary_face
|
90 |
+
|
91 |
+
|
92 |
+
def visualize_eyes(landmarks, frame):
|
93 |
+
for i in range(36, 48):
|
94 |
+
cv2.circle(frame, tuple(landmarks[i].astype("int")), 2, (0, 255, 0), -1)
|
95 |
+
|
96 |
+
|
97 |
+
def get_eye_aspect_ratio(landmarks):
|
98 |
+
vert_dist_1right = calculate_distance(landmarks[37], landmarks[41])
|
99 |
+
vert_dist_2right = calculate_distance(landmarks[38], landmarks[40])
|
100 |
+
vert_dist_1left = calculate_distance(landmarks[43], landmarks[47])
|
101 |
+
vert_dist_2left = calculate_distance(landmarks[44], landmarks[46])
|
102 |
+
horz_dist_right = calculate_distance(landmarks[36], landmarks[39])
|
103 |
+
horz_dist_left = calculate_distance(landmarks[42], landmarks[45])
|
104 |
+
EAR_left = (vert_dist_1left + vert_dist_2left) / (2.0 * horz_dist_left)
|
105 |
+
EAR_right = (vert_dist_1right + vert_dist_2right) / (2.0 * horz_dist_right)
|
106 |
+
ear = (EAR_left + EAR_right) / 2
|
107 |
+
return ear
|
108 |
+
|
109 |
+
|
110 |
+
def calculate_distance(A, B):
|
111 |
+
distance = ((A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2) ** 0.5
|
112 |
+
return distance
|
113 |
+
|
114 |
+
|
115 |
+
def play(file):
|
116 |
+
if mixer_init:
|
117 |
+
mixer.init()
|
118 |
+
sound = mixer.Sound(file)
|
119 |
+
sound.play()
|
120 |
+
|
121 |
+
|
122 |
+
# ------------------------------------------------------------------------------
|
123 |
+
# 3. Processing function (to be used in Gradio).
|
124 |
+
# ------------------------------------------------------------------------------
|
125 |
+
|
126 |
+
|
127 |
+
def process_video(input_video):
|
128 |
+
|
129 |
+
# Generate unique filenames for the outputs
|
130 |
+
out_video_filename = "processed_video.mp4"
|
131 |
+
out_plot_filename = "ear_plot.png"
|
132 |
+
|
133 |
+
cap = cv2.VideoCapture(input_video)
|
134 |
+
ret, frame = cap.read()
|
135 |
+
if not ret:
|
136 |
+
print("Cannot read the input video.")
|
137 |
+
return None, None
|
138 |
+
|
139 |
+
frame_h = frame.shape[0]
|
140 |
+
frame_w = frame.shape[1]
|
141 |
+
|
142 |
+
# Initialize writer for processed video
|
143 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
144 |
+
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30
|
145 |
+
out_writer = cv2.VideoWriter(out_video_filename, fourcc, fps, (frame_w, frame_h))
|
146 |
+
|
147 |
+
# Calibration
|
148 |
+
frame_count = 0
|
149 |
+
frame_calib = 30 # Number of frames to use for threshold calibration.
|
150 |
+
sum_ear = 0
|
151 |
+
|
152 |
+
BLINK = 0
|
153 |
+
state_prev = state_curr = "open"
|
154 |
+
|
155 |
+
ear_values = []
|
156 |
+
|
157 |
+
while True:
|
158 |
+
ret, frame = cap.read()
|
159 |
+
if not ret:
|
160 |
+
break
|
161 |
+
|
162 |
+
# Detect Face.
|
163 |
+
faces = detect_faces(frame, detection_threshold=0.90)
|
164 |
+
|
165 |
+
if len(faces) > 0:
|
166 |
+
# Use primary face
|
167 |
+
primary_face = get_primary_face(faces, frame_h, frame_w)
|
168 |
+
|
169 |
+
if primary_face is not None:
|
170 |
+
cv2.rectangle(
|
171 |
+
frame,
|
172 |
+
(primary_face[0], primary_face[1]),
|
173 |
+
(primary_face[0] + primary_face[2], primary_face[1] + primary_face[3]),
|
174 |
+
(0, 255, 0),
|
175 |
+
3,
|
176 |
+
)
|
177 |
+
|
178 |
+
# Detect Landmarks
|
179 |
+
retval, landmarksList = landmarkDetector.fit(frame, np.expand_dims(primary_face, 0))
|
180 |
+
|
181 |
+
if retval:
|
182 |
+
landmarks = landmarksList[0][0]
|
183 |
+
|
184 |
+
# Display detections.
|
185 |
+
visualize_eyes(landmarks, frame)
|
186 |
+
|
187 |
+
# Get EAR
|
188 |
+
ear = get_eye_aspect_ratio(landmarks)
|
189 |
+
ear_values.append(ear)
|
190 |
+
|
191 |
+
if frame_count < frame_calib:
|
192 |
+
frame_count += 1
|
193 |
+
sum_ear += ear
|
194 |
+
elif frame_count == frame_calib:
|
195 |
+
frame_count += 1
|
196 |
+
avg_ear = sum_ear / frame_count
|
197 |
+
HIGHER_TH = 0.90 * avg_ear
|
198 |
+
LOWER_TH = 0.80 * HIGHER_TH
|
199 |
+
print("SET EAR HIGH: ", HIGHER_TH)
|
200 |
+
print("SET EAR LOW: ", LOWER_TH)
|
201 |
+
else:
|
202 |
+
if ear < LOWER_TH:
|
203 |
+
state_curr = "closed"
|
204 |
+
elif ear > HIGHER_TH:
|
205 |
+
state_curr = "open"
|
206 |
+
|
207 |
+
if state_prev == "closed" and state_curr == "open":
|
208 |
+
BLINK += 1
|
209 |
+
if mixer_init:
|
210 |
+
play("./click.wav")
|
211 |
+
|
212 |
+
state_prev = state_curr
|
213 |
+
|
214 |
+
cv2.putText(
|
215 |
+
frame,
|
216 |
+
f"Blink Counter: {BLINK}",
|
217 |
+
(10, 80),
|
218 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
219 |
+
1.5,
|
220 |
+
(0, 0, 255),
|
221 |
+
4,
|
222 |
+
cv2.LINE_AA,
|
223 |
+
)
|
224 |
+
else:
|
225 |
+
# No valid face detected
|
226 |
+
pass
|
227 |
+
else:
|
228 |
+
# No faces
|
229 |
+
pass
|
230 |
+
frame_out_final = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
231 |
+
out_writer.write(frame)
|
232 |
+
|
233 |
+
yield frame_out_final, None, None
|
234 |
+
|
235 |
+
cap.release()
|
236 |
+
out_writer.release()
|
237 |
+
|
238 |
+
# Plot EAR values if collected
|
239 |
+
if ear_values:
|
240 |
+
plt.figure(figsize=(10, 5.625))
|
241 |
+
plt.plot(ear_values, label="EAR")
|
242 |
+
plt.title("Eye Aspect Ratio (EAR) over time")
|
243 |
+
plt.xlabel("Frame Index")
|
244 |
+
plt.ylabel("EAR")
|
245 |
+
plt.legend()
|
246 |
+
plt.grid(True)
|
247 |
+
plt.savefig(out_plot_filename)
|
248 |
+
plt.close()
|
249 |
+
else:
|
250 |
+
out_plot_filename = None
|
251 |
+
|
252 |
+
yield None, out_video_filename, out_plot_filename
|
253 |
+
|
254 |
+
|
255 |
+
# ------------------------------------------------------------------------------
|
256 |
+
# 4. Gradio UI
|
257 |
+
# ------------------------------------------------------------------------------
|
258 |
+
|
259 |
+
|
260 |
+
def process_gradio(video_file):
|
261 |
+
if video_file is None:
|
262 |
+
return None, None, None
|
263 |
+
|
264 |
+
video_path = video_file
|
265 |
+
output_frames = None
|
266 |
+
processed_video = None
|
267 |
+
plot_img = None
|
268 |
+
|
269 |
+
# Process video using generator
|
270 |
+
for frame_out, processed_video_path, plot_path in process_video(video_path):
|
271 |
+
if frame_out is not None:
|
272 |
+
output_frames = frame_out # Update frames dynamically
|
273 |
+
yield output_frames, None, None # Gradio updates frames step-by-step
|
274 |
+
else:
|
275 |
+
processed_video = processed_video_path
|
276 |
+
plot_img = plot_path
|
277 |
+
|
278 |
+
# Final yield with processed video and EAR plot
|
279 |
+
yield None, processed_video, plot_img
|
280 |
+
|
281 |
+
|
282 |
+
with gr.Blocks() as demo:
|
283 |
+
gr.Markdown("# Blink Detection with OpenCV")
|
284 |
+
gr.Markdown("Upload a video to detect blinks and view the EAR plot after processing.")
|
285 |
+
video_input = gr.Video(label="Input Video")
|
286 |
+
process_btn = gr.Button("Process")
|
287 |
+
output_frames = gr.Image(label="Output Frames")
|
288 |
+
with gr.Row():
|
289 |
+
processed_video = gr.Video(label="Processed Video")
|
290 |
+
ear_plot = gr.Image(label="EAR Plot")
|
291 |
+
process_btn.click(process_gradio, inputs=video_input, outputs=[output_frames, processed_video, ear_plot])
|
292 |
+
|
293 |
+
examples = [
|
294 |
+
["./input-video.mp4"],
|
295 |
+
]
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
gr.Examples(
|
299 |
+
examples=examples,
|
300 |
+
inputs=[video_input],
|
301 |
+
label="Load Example Video",
|
302 |
+
)
|
303 |
+
|
304 |
+
if __name__ == "__main__":
|
305 |
+
demo.launch()
|
click.wav
ADDED
Binary file (195 kB). View file
|
|
input-video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c1bdb3d8302bbb63bc5fb8137e2b532182bb3126261bebd5f1d6cd48d52dfab
|
3 |
+
size 38229628
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-contrib-python
|
2 |
+
gradio
|
3 |
+
matplotlib
|
4 |
+
pygame
|