File size: 5,839 Bytes
32a91d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import cv2
import numpy as np
import gradio as gr


# Define a blurring function.
def blur(face, factor=3):

    h, w = face.shape[:2]

    if factor < 1:
        factor = 1  # Maximum blurring
    if factor > 5:
        factor = 5  # Minimal blurring

    # Kernel size.
    w_k = int(w / factor)
    h_k = int(h / factor)

    # Insure kernel is an odd number.
    if w_k % 2 == 0:
        w_k += 1
    if h_k % 2 == 0:
        h_k += 1

    blurred = cv2.GaussianBlur(face, (int(w_k), int(h_k)), 0, 0)
    return blurred


def pixelate(roi, pixels=16):

    # Size of region to pixelate.
    roi_h, roi_w = roi.shape[:2]

    if roi_h > pixels and roi_w > pixels:
        # Resize input ROI to the (small) pixelated size.
        roi_small = cv2.resize(roi, (pixels, pixels), interpolation=cv2.INTER_LINEAR)

        # Now enlarge the pixelated ROI to fill the size of the original ROI.
        roi_pixelated = cv2.resize(roi_small, (roi_w, roi_h), interpolation=cv2.INTER_NEAREST)
    else:
        roi_pixelated = roi

    return roi_pixelated


def face_blur_ellipse_pixelate(image, net, detect_threshold=0.9, factor=3, pixels=10, write_mask=False):

    img = image.copy()
    img_out = img.copy()
    elliptical_mask = np.zeros(img.shape, dtype=img.dtype)

    # Prepare image and perform inference.
    blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=[104, 117, 123])
    net.setInput(blob)
    detections = net.forward()

    h, w = img.shape[:2]
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > detect_threshold:

            # Extract the bounding box coordinates from the detection.
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (x1, y1, x2, y2) = box

            # The face is defined by the bounding rectangle from the detection.
            face = img[int(y1) : int(y2), int(x1) : int(x2), :]

            # Blur the rectangular area defined by the bounding box.
            face = blur(face, factor=factor)

            # Pixelate the blurred face.
            face = pixelate(face, pixels=pixels)

            # Copy the blurred/pixelated face to the output image.
            img_out[int(y1) : int(y2), int(x1) : int(x2), :] = face

            # Specify the elliptical parameters directly from the bounding box coordinates.
            e_center = (x1 + (x2 - x1) / 2, y1 + (y2 - y1) / 2)
            e_size = (x2 - x1, y2 - y1)
            e_angle = 0.0

            # Create an elliptical mask.
            elliptical_mask = cv2.ellipse(
                elliptical_mask, (e_center, e_size, e_angle), (255, 255, 255), -1, cv2.LINE_AA
            )
            # Apply the elliptical mask.
            np.putmask(img, elliptical_mask, img_out)

    if write_mask:
        cv2.imwrite("elliptical_mask.jpg", elliptical_mask)

    return img


# img1_epb = face_blur_ellipse_pixelate(img1, net, factor=3.5, pixels=15)
# img2_epb = face_blur_ellipse_pixelate(img2, net, factor=2, pixels=10)


# cv2.imshow('image-out', img1_epb)
# cv2.waitKey(0)
# cv2.imshow('image-out', img2_epb)
# cv2.waitKey(0)
# cv2.destroyAllWindows()


def process_video(input_video_path, detect_threshold=0.9, blur_factor=3, pixel_size=10):
    
    # Load the DNN model.
    modelFile = "./model/res10_300x300_ssd_iter_140000.caffemodel"
    configFile = "./model/deploy.prototxt"

    # Read the model and create a network object.
    net = cv2.dnn.readNetFromCaffe(prototxt=configFile, caffeModel=modelFile)
    # Initialize video capture.
    cap = cv2.VideoCapture(input_video_path)
    if not cap.isOpened():
        print(f"Error: Cannot open video file {input_video_path}")
        return

    # Get video properties.
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")  # You can change the codec as needed.
    output_video_path = "output_video.mp4"

    # Initialize video writer.
    out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    current_frame = 0

    print(f"Processing video... Total frames: {frame_count}")

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        # Process the frame.
        processed_frame = face_blur_ellipse_pixelate(frame, net, detect_threshold, blur_factor, pixel_size)

        # cv2.imshow('output', processed_frame)

        # Write the processed frame to the output video.
        out.write(processed_frame)

        current_frame += 1
        if current_frame % 30 == 0 or current_frame == frame_count:
            print(f"Processed {current_frame}/{frame_count} frames")

    # Release resources.
    cap.release()
    out.release()
    print(f"Processing complete. Output saved to {output_video_path}")
    return output_video_path


# input_video = "./input-video.mp4"

# process_video(input_video)


# Define the Gradio interface
iface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Video(label="Input Video", autoplay=True),
        gr.Slider(minimum=0.5, maximum=0.99, value=0.9, label="Detection Confidence Threshold"),
        gr.Slider(minimum=1, maximum=5, step=0.5, value=3, label="Blur Factor"),
        gr.Slider(minimum=5, maximum=50, step=1, value=10, label="Pixelation Size"),
    ],
    outputs=[gr.Video(label="Processed Video", autoplay=True)],
    title="Face Blurring with OpenCV",
    description="Upload a video file (MP4 or AVI). The app will detect faces, blur and pixelate them, and provide a processed video for download.",
    examples=[["./input-video.mp4", 0.9, 3, 10], ["./man-woman.mp4", 0.85, 4, 12]],
    cache_examples=False,
)

if __name__ == "__main__":
    iface.launch()