File size: 5,839 Bytes
32a91d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import cv2
import numpy as np
import gradio as gr
# Define a blurring function.
def blur(face, factor=3):
h, w = face.shape[:2]
if factor < 1:
factor = 1 # Maximum blurring
if factor > 5:
factor = 5 # Minimal blurring
# Kernel size.
w_k = int(w / factor)
h_k = int(h / factor)
# Insure kernel is an odd number.
if w_k % 2 == 0:
w_k += 1
if h_k % 2 == 0:
h_k += 1
blurred = cv2.GaussianBlur(face, (int(w_k), int(h_k)), 0, 0)
return blurred
def pixelate(roi, pixels=16):
# Size of region to pixelate.
roi_h, roi_w = roi.shape[:2]
if roi_h > pixels and roi_w > pixels:
# Resize input ROI to the (small) pixelated size.
roi_small = cv2.resize(roi, (pixels, pixels), interpolation=cv2.INTER_LINEAR)
# Now enlarge the pixelated ROI to fill the size of the original ROI.
roi_pixelated = cv2.resize(roi_small, (roi_w, roi_h), interpolation=cv2.INTER_NEAREST)
else:
roi_pixelated = roi
return roi_pixelated
def face_blur_ellipse_pixelate(image, net, detect_threshold=0.9, factor=3, pixels=10, write_mask=False):
img = image.copy()
img_out = img.copy()
elliptical_mask = np.zeros(img.shape, dtype=img.dtype)
# Prepare image and perform inference.
blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=[104, 117, 123])
net.setInput(blob)
detections = net.forward()
h, w = img.shape[:2]
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > detect_threshold:
# Extract the bounding box coordinates from the detection.
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(x1, y1, x2, y2) = box
# The face is defined by the bounding rectangle from the detection.
face = img[int(y1) : int(y2), int(x1) : int(x2), :]
# Blur the rectangular area defined by the bounding box.
face = blur(face, factor=factor)
# Pixelate the blurred face.
face = pixelate(face, pixels=pixels)
# Copy the blurred/pixelated face to the output image.
img_out[int(y1) : int(y2), int(x1) : int(x2), :] = face
# Specify the elliptical parameters directly from the bounding box coordinates.
e_center = (x1 + (x2 - x1) / 2, y1 + (y2 - y1) / 2)
e_size = (x2 - x1, y2 - y1)
e_angle = 0.0
# Create an elliptical mask.
elliptical_mask = cv2.ellipse(
elliptical_mask, (e_center, e_size, e_angle), (255, 255, 255), -1, cv2.LINE_AA
)
# Apply the elliptical mask.
np.putmask(img, elliptical_mask, img_out)
if write_mask:
cv2.imwrite("elliptical_mask.jpg", elliptical_mask)
return img
# img1_epb = face_blur_ellipse_pixelate(img1, net, factor=3.5, pixels=15)
# img2_epb = face_blur_ellipse_pixelate(img2, net, factor=2, pixels=10)
# cv2.imshow('image-out', img1_epb)
# cv2.waitKey(0)
# cv2.imshow('image-out', img2_epb)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
def process_video(input_video_path, detect_threshold=0.9, blur_factor=3, pixel_size=10):
# Load the DNN model.
modelFile = "./model/res10_300x300_ssd_iter_140000.caffemodel"
configFile = "./model/deploy.prototxt"
# Read the model and create a network object.
net = cv2.dnn.readNetFromCaffe(prototxt=configFile, caffeModel=modelFile)
# Initialize video capture.
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
print(f"Error: Cannot open video file {input_video_path}")
return
# Get video properties.
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # You can change the codec as needed.
output_video_path = "output_video.mp4"
# Initialize video writer.
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
current_frame = 0
print(f"Processing video... Total frames: {frame_count}")
while True:
ret, frame = cap.read()
if not ret:
break
# Process the frame.
processed_frame = face_blur_ellipse_pixelate(frame, net, detect_threshold, blur_factor, pixel_size)
# cv2.imshow('output', processed_frame)
# Write the processed frame to the output video.
out.write(processed_frame)
current_frame += 1
if current_frame % 30 == 0 or current_frame == frame_count:
print(f"Processed {current_frame}/{frame_count} frames")
# Release resources.
cap.release()
out.release()
print(f"Processing complete. Output saved to {output_video_path}")
return output_video_path
# input_video = "./input-video.mp4"
# process_video(input_video)
# Define the Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(label="Input Video", autoplay=True),
gr.Slider(minimum=0.5, maximum=0.99, value=0.9, label="Detection Confidence Threshold"),
gr.Slider(minimum=1, maximum=5, step=0.5, value=3, label="Blur Factor"),
gr.Slider(minimum=5, maximum=50, step=1, value=10, label="Pixelation Size"),
],
outputs=[gr.Video(label="Processed Video", autoplay=True)],
title="Face Blurring with OpenCV",
description="Upload a video file (MP4 or AVI). The app will detect faces, blur and pixelate them, and provide a processed video for download.",
examples=[["./input-video.mp4", 0.9, 3, 10], ["./man-woman.mp4", 0.85, 4, 12]],
cache_examples=False,
)
if __name__ == "__main__":
iface.launch()
|